z自适应模糊推理系统

Fatemeh Rezaee-Ahmadi, H. Rafiei, M. Akbarzadeh-T.
{"title":"z自适应模糊推理系统","authors":"Fatemeh Rezaee-Ahmadi, H. Rafiei, M. Akbarzadeh-T.","doi":"10.1109/FUZZ45933.2021.9494413","DOIUrl":null,"url":null,"abstract":"Z-numbers consist of two components, restriction and restriction reliability, to cover both possibilistic and probabilistic uncertainties. So far, the components of Z-numbers are merely determined by expert knowledge and lack automated learning/training. To overcome this limitation, we propose a Z-Adaptive Fuzzy Inference System (ZAFIS) that systematically learns the parameters of Z-numbers from input-output data pairs. We first convert the second component of Z-numbers to a crisp number. We then use this number as a weight for the first fuzzy membership part of Z-numbers. Finally, the resultant membership is placed in a fuzzy inference system, and the parameters of the system are learned based on the input-output data pairs using a gradient descent algorithm. The proposed method is evaluated on several functions (sine, increasing sine, Hermite, Gabor, and a nonlinear function) with/without added noise scenarios. The results show that the ZAFIS is more robust against the noisy inputs and is superior to the Fuzzy Inference Systems (FISs) in terms of MSE.","PeriodicalId":151289,"journal":{"name":"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Z-Adaptive Fuzzy Inference Systems\",\"authors\":\"Fatemeh Rezaee-Ahmadi, H. Rafiei, M. Akbarzadeh-T.\",\"doi\":\"10.1109/FUZZ45933.2021.9494413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Z-numbers consist of two components, restriction and restriction reliability, to cover both possibilistic and probabilistic uncertainties. So far, the components of Z-numbers are merely determined by expert knowledge and lack automated learning/training. To overcome this limitation, we propose a Z-Adaptive Fuzzy Inference System (ZAFIS) that systematically learns the parameters of Z-numbers from input-output data pairs. We first convert the second component of Z-numbers to a crisp number. We then use this number as a weight for the first fuzzy membership part of Z-numbers. Finally, the resultant membership is placed in a fuzzy inference system, and the parameters of the system are learned based on the input-output data pairs using a gradient descent algorithm. The proposed method is evaluated on several functions (sine, increasing sine, Hermite, Gabor, and a nonlinear function) with/without added noise scenarios. The results show that the ZAFIS is more robust against the noisy inputs and is superior to the Fuzzy Inference Systems (FISs) in terms of MSE.\",\"PeriodicalId\":151289,\"journal\":{\"name\":\"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZ45933.2021.9494413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ45933.2021.9494413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

z数由限制和限制可靠性两部分组成,涵盖了可能性和概率的不确定性。到目前为止,z数的组成部分仅仅是由专家知识决定的,缺乏自动学习/培训。为了克服这一限制,我们提出了一个z自适应模糊推理系统(ZAFIS),系统地从输入输出数据对中学习z数的参数。我们首先将z数的第二个分量转换为一个清晰的数字。然后我们使用这个数字作为z数的第一个模糊隶属度部分的权重。最后,将得到的隶属度置于模糊推理系统中,并使用梯度下降算法根据输入输出数据对学习系统参数。提出的方法在几个函数(正弦、递增正弦、Hermite、Gabor和一个非线性函数)上进行了评估,这些函数有/没有添加噪声的场景。结果表明,ZAFIS对噪声输入具有更强的鲁棒性,在MSE方面优于模糊推理系统(FISs)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Z-Adaptive Fuzzy Inference Systems
Z-numbers consist of two components, restriction and restriction reliability, to cover both possibilistic and probabilistic uncertainties. So far, the components of Z-numbers are merely determined by expert knowledge and lack automated learning/training. To overcome this limitation, we propose a Z-Adaptive Fuzzy Inference System (ZAFIS) that systematically learns the parameters of Z-numbers from input-output data pairs. We first convert the second component of Z-numbers to a crisp number. We then use this number as a weight for the first fuzzy membership part of Z-numbers. Finally, the resultant membership is placed in a fuzzy inference system, and the parameters of the system are learned based on the input-output data pairs using a gradient descent algorithm. The proposed method is evaluated on several functions (sine, increasing sine, Hermite, Gabor, and a nonlinear function) with/without added noise scenarios. The results show that the ZAFIS is more robust against the noisy inputs and is superior to the Fuzzy Inference Systems (FISs) in terms of MSE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
XAI Models for Quality of Experience Prediction in Wireless Networks Application of the Fuzzy Logic to Evaluation and Selection of Attribute Ranges in Machine Learning Kernel-Based k-Representatives Algorithm for Fuzzy Clustering of Categorical Data Necessary and sufficient condition for the existence of Atanassov's Intuitionistic Fuzzy based additive definite integral Identifying and Rectifying Rational Gaps in Fuzzy Rule Based Systems for Regression Problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1