认知无线电网络频谱互惠接入的能源合作

Dawei Wang, Pinyi Ren, Yichen Wang, Qinghe Du, Li Sun
{"title":"认知无线电网络频谱互惠接入的能源合作","authors":"Dawei Wang, Pinyi Ren, Yichen Wang, Qinghe Du, Li Sun","doi":"10.1109/GlobalSIP.2014.7032337","DOIUrl":null,"url":null,"abstract":"In this paper, we develop an energy cooperation scheme for secondary users' (SU) spectrum access in the hybrid energy supply primary system, which will improve both energy efficiency and spectral efficiency. Specifically, the cooperation is implemented into two stages. In the first stage, the secondary system is allowed to access the licensed for secondary transmission. Simultaneously, the primary system harvests energy from the secondary radio-frequency signals. In the second stage, the primary system employs the energy from the energy harvester and the constant energy source for primary transmission in the remaining slot. Both the primary and secondary systems will benefit from our proposed energy cooperation scheme. The secondary system is allocated to access the spectrum freely and the primary system can harvest energy from SUs' radio-frequency signals. To analyze the throughput performance of both the primary and secondary systems, we derive the closed-form expressions of the outage probability and ergodic capacity for the delay-limited and delay-tolerant transmission modes, respectively. Simulation results verify the analytical results and demonstrate that compared with direct transmission, the performance of the primary system in terms of throughput improves and the secondary system acquires more spectrum opportunities for the secondary transmission.","PeriodicalId":362306,"journal":{"name":"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Energy cooperation for reciprocally-benefited spectrum access in cognitive radio networks\",\"authors\":\"Dawei Wang, Pinyi Ren, Yichen Wang, Qinghe Du, Li Sun\",\"doi\":\"10.1109/GlobalSIP.2014.7032337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we develop an energy cooperation scheme for secondary users' (SU) spectrum access in the hybrid energy supply primary system, which will improve both energy efficiency and spectral efficiency. Specifically, the cooperation is implemented into two stages. In the first stage, the secondary system is allowed to access the licensed for secondary transmission. Simultaneously, the primary system harvests energy from the secondary radio-frequency signals. In the second stage, the primary system employs the energy from the energy harvester and the constant energy source for primary transmission in the remaining slot. Both the primary and secondary systems will benefit from our proposed energy cooperation scheme. The secondary system is allocated to access the spectrum freely and the primary system can harvest energy from SUs' radio-frequency signals. To analyze the throughput performance of both the primary and secondary systems, we derive the closed-form expressions of the outage probability and ergodic capacity for the delay-limited and delay-tolerant transmission modes, respectively. Simulation results verify the analytical results and demonstrate that compared with direct transmission, the performance of the primary system in terms of throughput improves and the secondary system acquires more spectrum opportunities for the secondary transmission.\",\"PeriodicalId\":362306,\"journal\":{\"name\":\"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GlobalSIP.2014.7032337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2014.7032337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文针对混合供电一次系统中二次用户(SU)频谱接入问题,提出了一种能源合作方案,以提高能源效率和频谱效率。具体而言,合作分两个阶段实施。在第一阶段,二级系统被允许接入许可进行二级传输。同时,主系统从次级射频信号中获取能量。在第二阶段,一次系统利用能量采集器的能量和剩余槽的恒定能量源进行一次传输。一次和二次系统都将从我们提出的能源合作计划中受益。二级系统被分配自由访问频谱,一级系统可以从SUs的射频信号中获取能量。为了分析主系统和二次系统的吞吐量性能,我们分别导出了延迟限制传输模式和延迟容忍传输模式下的中断概率和遍历容量的封闭表达式。仿真结果验证了分析结果,表明与直接传输相比,主系统在吞吐量方面的性能有所提高,次系统为二次传输获得了更多的频谱机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy cooperation for reciprocally-benefited spectrum access in cognitive radio networks
In this paper, we develop an energy cooperation scheme for secondary users' (SU) spectrum access in the hybrid energy supply primary system, which will improve both energy efficiency and spectral efficiency. Specifically, the cooperation is implemented into two stages. In the first stage, the secondary system is allowed to access the licensed for secondary transmission. Simultaneously, the primary system harvests energy from the secondary radio-frequency signals. In the second stage, the primary system employs the energy from the energy harvester and the constant energy source for primary transmission in the remaining slot. Both the primary and secondary systems will benefit from our proposed energy cooperation scheme. The secondary system is allocated to access the spectrum freely and the primary system can harvest energy from SUs' radio-frequency signals. To analyze the throughput performance of both the primary and secondary systems, we derive the closed-form expressions of the outage probability and ergodic capacity for the delay-limited and delay-tolerant transmission modes, respectively. Simulation results verify the analytical results and demonstrate that compared with direct transmission, the performance of the primary system in terms of throughput improves and the secondary system acquires more spectrum opportunities for the secondary transmission.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Competitive design of power allocation strategies for energy harvesting wireless communication systems Correction of over-exposure using color channel correlations Communications meets copula modeling: Non-standard dependence features in wireless fading channels Energy efficient and low complex wireless communication Feasibility of positive secrecy rate in wiretap interference channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1