Huanzhou Zhu, Ligang He, Bo Gao, Kenli Li, Jianhua Sun, Hao Chen, Kuan-Ching Li
{"title":"多核处理器协同调度策略的建模与开发","authors":"Huanzhou Zhu, Ligang He, Bo Gao, Kenli Li, Jianhua Sun, Hao Chen, Kuan-Ching Li","doi":"10.1109/ICPP.2015.31","DOIUrl":null,"url":null,"abstract":"On-chip cache is often shared between processes that run concurrently on different cores of the same processor. Resource contention of this type causes performance degradation to the co-running processes. Contention-aware co-scheduling refers to the class of scheduling techniques to reduce the performance degradation. Most existing contention-aware co-schedulers only consider serial jobs. However, there often exist both parallel and serial jobs in computing systems. In this paper, the problem of co-scheduling a mix of serial and parallel jobs is modelled as an Integer Programming (IP) problem. Then the existing IP solver can be used to find the optimal co-scheduling solution that minimizes the performance degradation. However, we find that the IP-based method incurs high time overhead and can only be used to solve small-scale problems. Therefore, a graph-based method is also proposed in this paper to tackle this problem. We construct a co-scheduling graph to represent the co-scheduling problem and model the problem of finding the optimal co-scheduling solution as the problem of finding the shortest valid path in the co-scheduling graph. A heuristic A*-search algorithm (HA*) is then developed to find the near-optimal solutions efficiently. The extensive experiments have been conducted to verify the effectiveness and efficiency of the proposed methods. The experimental results show that compared with the IP-based method, HA* is able to find the near-optimal solutions with much less time.","PeriodicalId":423007,"journal":{"name":"2015 44th International Conference on Parallel Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Modelling and Developing Co-scheduling Strategies on Multicore Processors\",\"authors\":\"Huanzhou Zhu, Ligang He, Bo Gao, Kenli Li, Jianhua Sun, Hao Chen, Kuan-Ching Li\",\"doi\":\"10.1109/ICPP.2015.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On-chip cache is often shared between processes that run concurrently on different cores of the same processor. Resource contention of this type causes performance degradation to the co-running processes. Contention-aware co-scheduling refers to the class of scheduling techniques to reduce the performance degradation. Most existing contention-aware co-schedulers only consider serial jobs. However, there often exist both parallel and serial jobs in computing systems. In this paper, the problem of co-scheduling a mix of serial and parallel jobs is modelled as an Integer Programming (IP) problem. Then the existing IP solver can be used to find the optimal co-scheduling solution that minimizes the performance degradation. However, we find that the IP-based method incurs high time overhead and can only be used to solve small-scale problems. Therefore, a graph-based method is also proposed in this paper to tackle this problem. We construct a co-scheduling graph to represent the co-scheduling problem and model the problem of finding the optimal co-scheduling solution as the problem of finding the shortest valid path in the co-scheduling graph. A heuristic A*-search algorithm (HA*) is then developed to find the near-optimal solutions efficiently. The extensive experiments have been conducted to verify the effectiveness and efficiency of the proposed methods. The experimental results show that compared with the IP-based method, HA* is able to find the near-optimal solutions with much less time.\",\"PeriodicalId\":423007,\"journal\":{\"name\":\"2015 44th International Conference on Parallel Processing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 44th International Conference on Parallel Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPP.2015.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 44th International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2015.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modelling and Developing Co-scheduling Strategies on Multicore Processors
On-chip cache is often shared between processes that run concurrently on different cores of the same processor. Resource contention of this type causes performance degradation to the co-running processes. Contention-aware co-scheduling refers to the class of scheduling techniques to reduce the performance degradation. Most existing contention-aware co-schedulers only consider serial jobs. However, there often exist both parallel and serial jobs in computing systems. In this paper, the problem of co-scheduling a mix of serial and parallel jobs is modelled as an Integer Programming (IP) problem. Then the existing IP solver can be used to find the optimal co-scheduling solution that minimizes the performance degradation. However, we find that the IP-based method incurs high time overhead and can only be used to solve small-scale problems. Therefore, a graph-based method is also proposed in this paper to tackle this problem. We construct a co-scheduling graph to represent the co-scheduling problem and model the problem of finding the optimal co-scheduling solution as the problem of finding the shortest valid path in the co-scheduling graph. A heuristic A*-search algorithm (HA*) is then developed to find the near-optimal solutions efficiently. The extensive experiments have been conducted to verify the effectiveness and efficiency of the proposed methods. The experimental results show that compared with the IP-based method, HA* is able to find the near-optimal solutions with much less time.