使用变点分析和机器学习技术检测智能手机设备的异常行为

Ricardo Alejandro Manzano Sanchez, Kshirasagar Naik, Abdurhman Albasir, Marzia Zaman, N. Goel
{"title":"使用变点分析和机器学习技术检测智能手机设备的异常行为","authors":"Ricardo Alejandro Manzano Sanchez, Kshirasagar Naik, Abdurhman Albasir, Marzia Zaman, N. Goel","doi":"10.1145/3492327","DOIUrl":null,"url":null,"abstract":"Detecting anomalous behavior on smartphones is challenging since malware evolution. Other methodologies detect malicious behavior by analyzing static features of the application code or dynamic data samples obtained from hardware or software. Static analysis is prone to code’s obfuscation while dynamic needs that malicious activities to cease to be dormant in the shortest possible time while data samples are collected. Triggering and capturing malicious behavior in data samples in dynamic analysis is challenging since we need to generate an efficient combination of user’s inputs to trigger these malicious activities. We propose a general model which uses a data collector and analyzer to unveil malicious behavior by analyzing the device’s power consumption since this summarizes the changes in software. The data collector uses an automated tool to generate user inputs. The data analyzer uses changepoint analysis to extract features from power consumption and machine learning techniques to train these features. The data analyzer stage contains two methodologies that extract features using parametric and non-parametric changepoint. Our methodologies are efficient in data collection time than a manual method and the data analyzer provides higher accuracy compared to other techniques, reaching over 94% F1-measure for emulated and real malware.","PeriodicalId":202552,"journal":{"name":"Digital Threats: Research and Practice","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Detection of Anomalous Behavior of Smartphone Devices using Changepoint Analysis and Machine Learning Techniques\",\"authors\":\"Ricardo Alejandro Manzano Sanchez, Kshirasagar Naik, Abdurhman Albasir, Marzia Zaman, N. Goel\",\"doi\":\"10.1145/3492327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detecting anomalous behavior on smartphones is challenging since malware evolution. Other methodologies detect malicious behavior by analyzing static features of the application code or dynamic data samples obtained from hardware or software. Static analysis is prone to code’s obfuscation while dynamic needs that malicious activities to cease to be dormant in the shortest possible time while data samples are collected. Triggering and capturing malicious behavior in data samples in dynamic analysis is challenging since we need to generate an efficient combination of user’s inputs to trigger these malicious activities. We propose a general model which uses a data collector and analyzer to unveil malicious behavior by analyzing the device’s power consumption since this summarizes the changes in software. The data collector uses an automated tool to generate user inputs. The data analyzer uses changepoint analysis to extract features from power consumption and machine learning techniques to train these features. The data analyzer stage contains two methodologies that extract features using parametric and non-parametric changepoint. Our methodologies are efficient in data collection time than a manual method and the data analyzer provides higher accuracy compared to other techniques, reaching over 94% F1-measure for emulated and real malware.\",\"PeriodicalId\":202552,\"journal\":{\"name\":\"Digital Threats: Research and Practice\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Threats: Research and Practice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3492327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Threats: Research and Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3492327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

检测智能手机上的异常行为是具有挑战性的,因为恶意软件的进化。其他方法通过分析应用程序代码的静态特征或从硬件或软件获得的动态数据样本来检测恶意行为。静态分析容易导致代码混淆,而动态分析需要在收集数据样本的同时,在尽可能短的时间内停止恶意活动的休眠。在动态分析中触发和捕获数据样本中的恶意行为是具有挑战性的,因为我们需要生成用户输入的有效组合来触发这些恶意活动。我们提出了一个通用模型,该模型使用数据收集器和分析仪通过分析设备的功耗来揭示恶意行为,因为这总结了软件的变化。数据收集器使用自动化工具生成用户输入。数据分析器使用变化点分析从功耗中提取特征,并使用机器学习技术训练这些特征。数据分析阶段包含使用参数和非参数变化点提取特征的两种方法。我们的方法在数据收集时间上比手动方法更有效,与其他技术相比,数据分析仪提供了更高的准确性,对于模拟和真实的恶意软件达到了94%以上的f1测量值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection of Anomalous Behavior of Smartphone Devices using Changepoint Analysis and Machine Learning Techniques
Detecting anomalous behavior on smartphones is challenging since malware evolution. Other methodologies detect malicious behavior by analyzing static features of the application code or dynamic data samples obtained from hardware or software. Static analysis is prone to code’s obfuscation while dynamic needs that malicious activities to cease to be dormant in the shortest possible time while data samples are collected. Triggering and capturing malicious behavior in data samples in dynamic analysis is challenging since we need to generate an efficient combination of user’s inputs to trigger these malicious activities. We propose a general model which uses a data collector and analyzer to unveil malicious behavior by analyzing the device’s power consumption since this summarizes the changes in software. The data collector uses an automated tool to generate user inputs. The data analyzer uses changepoint analysis to extract features from power consumption and machine learning techniques to train these features. The data analyzer stage contains two methodologies that extract features using parametric and non-parametric changepoint. Our methodologies are efficient in data collection time than a manual method and the data analyzer provides higher accuracy compared to other techniques, reaching over 94% F1-measure for emulated and real malware.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Causal Inconsistencies are Normal in Windows Memory Dumps (too) InvesTEE: A TEE-supported Framework for Lawful Remote Forensic Investigations Does Cyber Insurance promote Cyber Security Best Practice? An Analysis based on Insurance Application Forms Unveiling Cyber Threat Actors: A Hybrid Deep Learning Approach for Behavior-based Attribution A Framework for Enhancing Social Media Misinformation Detection with Topical-Tactics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1