{"title":"一种低成本高性能教育移动机器人的设计:基于RPI和Arduino的方法","authors":"J. Gonçalves, A. Pinto, V. H. Pinto","doi":"10.13180/clawar.2018.10-12.09.15","DOIUrl":null,"url":null,"abstract":"In this paper the proposal of a low cost high performance educational mobile robot is described. The robot is based on an Arduino, applied in the low level control, while the high level control loop is carried out by an RPI running an object pascal application. The described robot was prototyped in order to have a competitive participation in the Robotic Day Line Follower 2017 competition, taking advantage of the RPI capabilities. The RPI allows the use of higher performance sensors, when compared with the most common standard approaches based on a single 8 bit RISC micro-controller, having as disadvantage the inevitable robot size increase, which compromises in certain situations the robot maneuverability and increases the power consumption. The robot is equipped with DC Motors, the chosen line follower sensor is the picamera and for the obstacle detection sonar sensors are used.","PeriodicalId":145851,"journal":{"name":"Robotics Transforming the Future","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Proposal of a low cost high performance educational mobile robot: An RPI and Arduino approach\",\"authors\":\"J. Gonçalves, A. Pinto, V. H. Pinto\",\"doi\":\"10.13180/clawar.2018.10-12.09.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the proposal of a low cost high performance educational mobile robot is described. The robot is based on an Arduino, applied in the low level control, while the high level control loop is carried out by an RPI running an object pascal application. The described robot was prototyped in order to have a competitive participation in the Robotic Day Line Follower 2017 competition, taking advantage of the RPI capabilities. The RPI allows the use of higher performance sensors, when compared with the most common standard approaches based on a single 8 bit RISC micro-controller, having as disadvantage the inevitable robot size increase, which compromises in certain situations the robot maneuverability and increases the power consumption. The robot is equipped with DC Motors, the chosen line follower sensor is the picamera and for the obstacle detection sonar sensors are used.\",\"PeriodicalId\":145851,\"journal\":{\"name\":\"Robotics Transforming the Future\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics Transforming the Future\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13180/clawar.2018.10-12.09.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics Transforming the Future","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13180/clawar.2018.10-12.09.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Proposal of a low cost high performance educational mobile robot: An RPI and Arduino approach
In this paper the proposal of a low cost high performance educational mobile robot is described. The robot is based on an Arduino, applied in the low level control, while the high level control loop is carried out by an RPI running an object pascal application. The described robot was prototyped in order to have a competitive participation in the Robotic Day Line Follower 2017 competition, taking advantage of the RPI capabilities. The RPI allows the use of higher performance sensors, when compared with the most common standard approaches based on a single 8 bit RISC micro-controller, having as disadvantage the inevitable robot size increase, which compromises in certain situations the robot maneuverability and increases the power consumption. The robot is equipped with DC Motors, the chosen line follower sensor is the picamera and for the obstacle detection sonar sensors are used.