基于模糊峰值神经网络和演化策略的信息结构化空间中人的交通方式估计

Dalai Tang, János Botzheim, N. Kubota, Toru Yamaguchi
{"title":"基于模糊峰值神经网络和演化策略的信息结构化空间中人的交通方式估计","authors":"Dalai Tang, János Botzheim, N. Kubota, Toru Yamaguchi","doi":"10.1109/GEFS.2013.6601053","DOIUrl":null,"url":null,"abstract":"This paper analyzes the performance of human transport mode estimation by fuzzy spiking neural network in informationally structured space based on smart phone sensor. The importance of information structuralization is considered. In our previous work we applied spiking neural network to extract the human position in a room equipped with sensor network devices. In this paper fuzzy spiking neural network is applied to extract the human activity outdoors when equipped with smart phone sensor. We discuss how to update the base value by preprocessing for generating the input values to the spiking neurons. The learning method of the spiking neural network based on the time series of the measured data is explained as well. Evolution strategy is used for optimizing the parameters of the fuzzy spiking neural network. Several experimental results are presented for confirming the effectiveness of the proposed method.","PeriodicalId":362308,"journal":{"name":"2013 IEEE International Workshop on Genetic and Evolutionary Fuzzy Systems (GEFS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Estimation of human transport modes by fuzzy spiking neural network and evolution strategy in informationally structured space\",\"authors\":\"Dalai Tang, János Botzheim, N. Kubota, Toru Yamaguchi\",\"doi\":\"10.1109/GEFS.2013.6601053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper analyzes the performance of human transport mode estimation by fuzzy spiking neural network in informationally structured space based on smart phone sensor. The importance of information structuralization is considered. In our previous work we applied spiking neural network to extract the human position in a room equipped with sensor network devices. In this paper fuzzy spiking neural network is applied to extract the human activity outdoors when equipped with smart phone sensor. We discuss how to update the base value by preprocessing for generating the input values to the spiking neurons. The learning method of the spiking neural network based on the time series of the measured data is explained as well. Evolution strategy is used for optimizing the parameters of the fuzzy spiking neural network. Several experimental results are presented for confirming the effectiveness of the proposed method.\",\"PeriodicalId\":362308,\"journal\":{\"name\":\"2013 IEEE International Workshop on Genetic and Evolutionary Fuzzy Systems (GEFS)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Workshop on Genetic and Evolutionary Fuzzy Systems (GEFS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GEFS.2013.6601053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Workshop on Genetic and Evolutionary Fuzzy Systems (GEFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GEFS.2013.6601053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文分析了基于智能手机传感器的模糊峰值神经网络在信息结构化空间中对人的交通方式估计的性能。考虑了信息结构化的重要性。在我们之前的工作中,我们应用了尖峰神经网络来提取配备了传感器网络设备的房间中的人体位置。本文将模糊峰值神经网络应用于智能手机传感器下的户外人类活动提取。我们讨论了如何通过预处理来更新基值,以生成尖峰神经元的输入值。说明了基于测量数据时间序列的脉冲神经网络的学习方法。采用进化策略对模糊脉冲神经网络的参数进行优化。实验结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation of human transport modes by fuzzy spiking neural network and evolution strategy in informationally structured space
This paper analyzes the performance of human transport mode estimation by fuzzy spiking neural network in informationally structured space based on smart phone sensor. The importance of information structuralization is considered. In our previous work we applied spiking neural network to extract the human position in a room equipped with sensor network devices. In this paper fuzzy spiking neural network is applied to extract the human activity outdoors when equipped with smart phone sensor. We discuss how to update the base value by preprocessing for generating the input values to the spiking neurons. The learning method of the spiking neural network based on the time series of the measured data is explained as well. Evolution strategy is used for optimizing the parameters of the fuzzy spiking neural network. Several experimental results are presented for confirming the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A two-stage multi-objective genetic-fuzzy mining algorithm Effects of data prevalence on species distribution modelling using a genetic takagi-sugeno fuzzy system An empirical study about the behavior of a genetic learning algorithm on searching spaces pruned by a completeness condition Boosting fuzzy rules with low quality data in multi-class problems: Open problems and challenges Estimation of human transport modes by fuzzy spiking neural network and evolution strategy in informationally structured space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1