结合聚类采样和ACE分析改进基于故障注入的gpu系统可靠性评估

Alessandro Vallero, S. Carlo
{"title":"结合聚类采样和ACE分析改进基于故障注入的gpu系统可靠性评估","authors":"Alessandro Vallero, S. Carlo","doi":"10.1109/DFT.2019.8875392","DOIUrl":null,"url":null,"abstract":"Computing capability demand has grown massively in recent years. Modern GPU chips are designed to deliver extreme performance for graphics and for data-parallel general purpose computing workloads (GPGPU computing) as well. Many GPGPU applications require high reliability, thus reliability evaluation has become a crucial step during their design. State-of-the-art techniques to assess the reliability of a system are fault injection and ACE analysis. The former can produce accurate results despite eternal time while the latter is very fast but it lacks accuracy of the results. In this paper we introduce a new sampling methodology based on cluster sampling that enables the exploitation of ACE analysis to accelerate the fault injection process. In our experiments we demonstrate that state-of-the-art fault injection techniques, generating random faults according to a uniform distribution, is outperformed by the proposed sampling technique, thus enabling several advantages in terms of accuracy and evaluation time. To quantify the introduced benefits we analyzed the micro-architecture reliability of an AMD Southern Islands GPU in presence of single bit upset affecting the vector register file for 6 benchmarks. One of the most important achievements is that considering all the benchmarks, on average, we are one order of magnitude faster/more accurate than uniform-sampling-based techniques in case of non exhaustive fault injection campaigns, while more than two orders of magnitude in case of exhaustive campaigns.","PeriodicalId":415648,"journal":{"name":"2019 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Combining Cluster Sampling and ACE analysis to improve fault-injection based reliability evaluation of GPU-based systems\",\"authors\":\"Alessandro Vallero, S. Carlo\",\"doi\":\"10.1109/DFT.2019.8875392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computing capability demand has grown massively in recent years. Modern GPU chips are designed to deliver extreme performance for graphics and for data-parallel general purpose computing workloads (GPGPU computing) as well. Many GPGPU applications require high reliability, thus reliability evaluation has become a crucial step during their design. State-of-the-art techniques to assess the reliability of a system are fault injection and ACE analysis. The former can produce accurate results despite eternal time while the latter is very fast but it lacks accuracy of the results. In this paper we introduce a new sampling methodology based on cluster sampling that enables the exploitation of ACE analysis to accelerate the fault injection process. In our experiments we demonstrate that state-of-the-art fault injection techniques, generating random faults according to a uniform distribution, is outperformed by the proposed sampling technique, thus enabling several advantages in terms of accuracy and evaluation time. To quantify the introduced benefits we analyzed the micro-architecture reliability of an AMD Southern Islands GPU in presence of single bit upset affecting the vector register file for 6 benchmarks. One of the most important achievements is that considering all the benchmarks, on average, we are one order of magnitude faster/more accurate than uniform-sampling-based techniques in case of non exhaustive fault injection campaigns, while more than two orders of magnitude in case of exhaustive campaigns.\",\"PeriodicalId\":415648,\"journal\":{\"name\":\"2019 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DFT.2019.8875392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DFT.2019.8875392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

近年来,对计算能力的需求大幅增长。现代GPU芯片旨在为图形和数据并行通用计算工作负载(GPGPU计算)提供极致性能。许多GPGPU应用对可靠性要求很高,因此可靠性评估成为GPGPU设计的关键步骤。评估系统可靠性的最新技术是故障注入和ACE分析。前者可以在永恒的时间内得到准确的结果,而后者速度很快,但结果缺乏准确性。本文提出了一种基于聚类抽样的采样方法,利用ACE分析来加速故障注入过程。在我们的实验中,我们证明了最先进的故障注入技术,根据均匀分布产生随机故障,优于所提出的采样技术,从而在准确性和评估时间方面具有若干优势。为了量化引入的好处,我们分析了AMD Southern Islands GPU在6个基准测试中存在影响矢量寄存器文件的单位扰动的微架构可靠性。最重要的成就之一是,考虑到所有的基准测试,平均而言,在非穷举故障注入活动的情况下,我们比基于均匀抽样的技术快一个数量级/更准确,而在穷举活动的情况下,我们比基于均匀抽样的技术快两个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combining Cluster Sampling and ACE analysis to improve fault-injection based reliability evaluation of GPU-based systems
Computing capability demand has grown massively in recent years. Modern GPU chips are designed to deliver extreme performance for graphics and for data-parallel general purpose computing workloads (GPGPU computing) as well. Many GPGPU applications require high reliability, thus reliability evaluation has become a crucial step during their design. State-of-the-art techniques to assess the reliability of a system are fault injection and ACE analysis. The former can produce accurate results despite eternal time while the latter is very fast but it lacks accuracy of the results. In this paper we introduce a new sampling methodology based on cluster sampling that enables the exploitation of ACE analysis to accelerate the fault injection process. In our experiments we demonstrate that state-of-the-art fault injection techniques, generating random faults according to a uniform distribution, is outperformed by the proposed sampling technique, thus enabling several advantages in terms of accuracy and evaluation time. To quantify the introduced benefits we analyzed the micro-architecture reliability of an AMD Southern Islands GPU in presence of single bit upset affecting the vector register file for 6 benchmarks. One of the most important achievements is that considering all the benchmarks, on average, we are one order of magnitude faster/more accurate than uniform-sampling-based techniques in case of non exhaustive fault injection campaigns, while more than two orders of magnitude in case of exhaustive campaigns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rebooting Computing: The Challenges for Test and Reliability A Comprehensive Evaluation of the Effects of Input Data on the Resilience of GPU Applications On the Criticality of Caches in Fault-Tolerant Processors for Space On-line Testing for Autonomous Systems driven by RISC-V Processor Design Verification Understanding of GPU Architectural Vulnerability for Deep Learning Workloads
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1