K均值与模糊c均值近红外荧光图像分割诊断前列腺癌的比较

R. Sammouda, Hatim Aboalsamh, Fahman Saeed
{"title":"K均值与模糊c均值近红外荧光图像分割诊断前列腺癌的比较","authors":"R. Sammouda, Hatim Aboalsamh, Fahman Saeed","doi":"10.1109/ICCVIA.2015.7351905","DOIUrl":null,"url":null,"abstract":"In each year there are thousands of people die due to prostate cancer. Near-infrared (NIRF) optical imaging is a new technique that uses the high absorption of hemoglobin in prostate's cancer cells for early detection. We use Image segmentation method to segment and extract the cancer region in the prostate's infrared images. In this paper, two image segmentation methods: K-means algorithm and fuzzy c-means (FCM) algorithms are discussed and compared. The extracted cancer clusters by two algorithms are compared using Student t-test and we found that the K-mean is more accurate approach than FCM in extracting the exact shape of tumors.","PeriodicalId":419122,"journal":{"name":"International Conference on Computer Vision and Image Analysis Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Comparison between K mean and fuzzy C-mean methods for segmentation of near infrared fluorescent image for diagnosing prostate cancer\",\"authors\":\"R. Sammouda, Hatim Aboalsamh, Fahman Saeed\",\"doi\":\"10.1109/ICCVIA.2015.7351905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In each year there are thousands of people die due to prostate cancer. Near-infrared (NIRF) optical imaging is a new technique that uses the high absorption of hemoglobin in prostate's cancer cells for early detection. We use Image segmentation method to segment and extract the cancer region in the prostate's infrared images. In this paper, two image segmentation methods: K-means algorithm and fuzzy c-means (FCM) algorithms are discussed and compared. The extracted cancer clusters by two algorithms are compared using Student t-test and we found that the K-mean is more accurate approach than FCM in extracting the exact shape of tumors.\",\"PeriodicalId\":419122,\"journal\":{\"name\":\"International Conference on Computer Vision and Image Analysis Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Computer Vision and Image Analysis Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCVIA.2015.7351905\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computer Vision and Image Analysis Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCVIA.2015.7351905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

每年有成千上万的人死于前列腺癌。近红外(NIRF)光学成像是一种利用前列腺癌细胞对血红蛋白的高吸收率进行早期检测的新技术。采用图像分割方法对前列腺红外图像中的癌变区域进行分割和提取。本文讨论并比较了两种图像分割方法:K-means算法和模糊c-means (FCM)算法。使用学生t检验对两种算法提取的肿瘤聚类进行比较,我们发现k均值方法比FCM方法更准确地提取肿瘤的确切形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison between K mean and fuzzy C-mean methods for segmentation of near infrared fluorescent image for diagnosing prostate cancer
In each year there are thousands of people die due to prostate cancer. Near-infrared (NIRF) optical imaging is a new technique that uses the high absorption of hemoglobin in prostate's cancer cells for early detection. We use Image segmentation method to segment and extract the cancer region in the prostate's infrared images. In this paper, two image segmentation methods: K-means algorithm and fuzzy c-means (FCM) algorithms are discussed and compared. The extracted cancer clusters by two algorithms are compared using Student t-test and we found that the K-mean is more accurate approach than FCM in extracting the exact shape of tumors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Labeling abnormalities in video based complex Human-Object Interactions by robust affordance modelling Implementation of optical correlator for face recognition applications Modeling information resources and application using ontological engineering Accurate, swift and noiseless image binarization Study with RK4 & ANOVA the location of the tumor at the smallest time for multi-images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1