被动回能假足假疲劳试验

Gabriel I. Lopez-Avina, E. Barocio, J. Huegel
{"title":"被动回能假足假疲劳试验","authors":"Gabriel I. Lopez-Avina, E. Barocio, J. Huegel","doi":"10.1109/GHTC.2017.8239315","DOIUrl":null,"url":null,"abstract":"Improving in the quality of life by expanding functionality and durability while continually reducing the fabrication costs and maintaining the possibility of local fabrication, these are the four key design requirements for lower-limb prosthetics with humanitarian applications. Currently, however, there are few foot prostheses that meet these requirements. The solutions available world-wide include passive-static solid-ankle cushion-heel (SACH), passive-dynamic, and active prostheses. Perhaps the best solution available is the injection-molded one-size-fits-all Niagara foot but it is both unstable for heavier patients and not suitable to interface with patient footware, thereby limiting its acceptance in footware conscious cultures. This research focuses on demonstrating the functionality and durability of the Tec-LIMBS fiber reinforced polymer (FRP) prosthetic foot designed with the aforementioned four-fold objective. We hypothesize that a low-cost FRP passive-dynamic prosthetic foot can be manufactured locally while still meeting durability, energy-return requirements and being socially aesthetic. The prosthesis is validated first, for energy-return via static tests as compared to two other commercial products, and second, for durability through a 500,000 gait-cycle fatigue test based on the ISO 22675 standard. Both tests are conducted employing a universal testing machine. The work reported herein is a continuation of prior prototyping that compared the prostheses via roll-over shape. The designed prosthesis has a comparatively higher energy-return characteristic for both keel and heel — above the two common competitors — and has successfully passed the fatigue test without deformation. The reported testing further demonstrates that the prosthesis design is ready for in-field patient testing and manufacture.","PeriodicalId":248924,"journal":{"name":"2017 IEEE Global Humanitarian Technology Conference (GHTC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Pseudo fatigue test of passive energy-returning prosthetic foot\",\"authors\":\"Gabriel I. Lopez-Avina, E. Barocio, J. Huegel\",\"doi\":\"10.1109/GHTC.2017.8239315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Improving in the quality of life by expanding functionality and durability while continually reducing the fabrication costs and maintaining the possibility of local fabrication, these are the four key design requirements for lower-limb prosthetics with humanitarian applications. Currently, however, there are few foot prostheses that meet these requirements. The solutions available world-wide include passive-static solid-ankle cushion-heel (SACH), passive-dynamic, and active prostheses. Perhaps the best solution available is the injection-molded one-size-fits-all Niagara foot but it is both unstable for heavier patients and not suitable to interface with patient footware, thereby limiting its acceptance in footware conscious cultures. This research focuses on demonstrating the functionality and durability of the Tec-LIMBS fiber reinforced polymer (FRP) prosthetic foot designed with the aforementioned four-fold objective. We hypothesize that a low-cost FRP passive-dynamic prosthetic foot can be manufactured locally while still meeting durability, energy-return requirements and being socially aesthetic. The prosthesis is validated first, for energy-return via static tests as compared to two other commercial products, and second, for durability through a 500,000 gait-cycle fatigue test based on the ISO 22675 standard. Both tests are conducted employing a universal testing machine. The work reported herein is a continuation of prior prototyping that compared the prostheses via roll-over shape. The designed prosthesis has a comparatively higher energy-return characteristic for both keel and heel — above the two common competitors — and has successfully passed the fatigue test without deformation. The reported testing further demonstrates that the prosthesis design is ready for in-field patient testing and manufacture.\",\"PeriodicalId\":248924,\"journal\":{\"name\":\"2017 IEEE Global Humanitarian Technology Conference (GHTC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Global Humanitarian Technology Conference (GHTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GHTC.2017.8239315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Global Humanitarian Technology Conference (GHTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GHTC.2017.8239315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

通过扩展功能和耐用性来提高生活质量,同时不断降低制造成本并保持本地制造的可能性,这是具有人道主义应用的下肢假肢的四个关键设计要求。然而,目前满足这些要求的足假体很少。世界范围内可用的解决方案包括被动-静态固体踝关节缓冲跟(SACH),被动-动态和主动假肢。也许最好的解决方案是注射成型的一刀切的尼亚加拉足,但它既不适合较重的患者,也不适合与患者的鞋类接触,因此限制了它在鞋类意识文化中的接受度。这项研究的重点是展示Tec-LIMBS纤维增强聚合物(FRP)假肢脚的功能和耐久性,该假肢脚具有上述四重目标。我们假设一种低成本的FRP被动动态假肢足可以在当地制造,同时仍然满足耐久性、能量回报要求和社会审美。首先,与其他两种商业产品相比,该假肢通过静态测试验证了能量返回,其次,通过基于ISO 22675标准的500000次步态循环疲劳测试验证了耐久性。两项试验均采用通用试验机进行。本文报道的工作是先前原型的延续,通过翻转形状比较假体。所设计的假体龙骨和足跟都具有较高的能量回传特性,超过了两种常见的竞争对手,并成功地通过了无变形的疲劳试验。报告的测试进一步表明,该假体设计已经准备好进行现场患者测试和制造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pseudo fatigue test of passive energy-returning prosthetic foot
Improving in the quality of life by expanding functionality and durability while continually reducing the fabrication costs and maintaining the possibility of local fabrication, these are the four key design requirements for lower-limb prosthetics with humanitarian applications. Currently, however, there are few foot prostheses that meet these requirements. The solutions available world-wide include passive-static solid-ankle cushion-heel (SACH), passive-dynamic, and active prostheses. Perhaps the best solution available is the injection-molded one-size-fits-all Niagara foot but it is both unstable for heavier patients and not suitable to interface with patient footware, thereby limiting its acceptance in footware conscious cultures. This research focuses on demonstrating the functionality and durability of the Tec-LIMBS fiber reinforced polymer (FRP) prosthetic foot designed with the aforementioned four-fold objective. We hypothesize that a low-cost FRP passive-dynamic prosthetic foot can be manufactured locally while still meeting durability, energy-return requirements and being socially aesthetic. The prosthesis is validated first, for energy-return via static tests as compared to two other commercial products, and second, for durability through a 500,000 gait-cycle fatigue test based on the ISO 22675 standard. Both tests are conducted employing a universal testing machine. The work reported herein is a continuation of prior prototyping that compared the prostheses via roll-over shape. The designed prosthesis has a comparatively higher energy-return characteristic for both keel and heel — above the two common competitors — and has successfully passed the fatigue test without deformation. The reported testing further demonstrates that the prosthesis design is ready for in-field patient testing and manufacture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tablet app for child cognitive assessment in low and middle income countries Analyzing sub-optimal rural microgrids and methods for improving the system capacity and demand factors: Filibaba microgrid case study examined A global market assessment methodology for small wind in the developing world Using smart power management control to maximize energy utilization and reliability within a microgrid of interconnected solar home systems Use of cough sounds for diagnosis and screening of pulmonary disease
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1