心电码本模型用于心肌梗死检测

Donglin Cao, Dazhen Lin, Yanping Lv
{"title":"心电码本模型用于心肌梗死检测","authors":"Donglin Cao, Dazhen Lin, Yanping Lv","doi":"10.1109/ICNC.2014.6975939","DOIUrl":null,"url":null,"abstract":"ECG is a kind of high dimensional dataset and the useful information of illness only exists in few heartbeats. To achieve a good classification performance, most existing approaches used features proposed by human experts, and there is no approach for automatic useful feature extraction. To solve that problem, we propose an ECG Codebook Model (ECGCM) which automatically builds a small number of codes to represent the high dimension ECG data. ECGCM not only greatly reduces the dimension of ECG, but also contains more meaningful semantic information for Myocardial Infarction detection. Our experiment results show that ECGCM achieves 2% and 20.5% improvement in sensitivity and specificity respectively in Myocardial Infarction detection.","PeriodicalId":208779,"journal":{"name":"2014 10th International Conference on Natural Computation (ICNC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"ECG codebook model for Myocardial Infarction detection\",\"authors\":\"Donglin Cao, Dazhen Lin, Yanping Lv\",\"doi\":\"10.1109/ICNC.2014.6975939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ECG is a kind of high dimensional dataset and the useful information of illness only exists in few heartbeats. To achieve a good classification performance, most existing approaches used features proposed by human experts, and there is no approach for automatic useful feature extraction. To solve that problem, we propose an ECG Codebook Model (ECGCM) which automatically builds a small number of codes to represent the high dimension ECG data. ECGCM not only greatly reduces the dimension of ECG, but also contains more meaningful semantic information for Myocardial Infarction detection. Our experiment results show that ECGCM achieves 2% and 20.5% improvement in sensitivity and specificity respectively in Myocardial Infarction detection.\",\"PeriodicalId\":208779,\"journal\":{\"name\":\"2014 10th International Conference on Natural Computation (ICNC)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 10th International Conference on Natural Computation (ICNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2014.6975939\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 10th International Conference on Natural Computation (ICNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2014.6975939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

心电图是一种高维数据集,有用的疾病信息只存在于少数心跳中。为了获得良好的分类性能,现有的方法大多采用人类专家提出的特征,没有自动提取有用特征的方法。为了解决这个问题,我们提出了一种心电码本模型(ECGCM),该模型可以自动生成少量的代码来表示高维心电数据。ECGCM不仅大大降低了心电图的维数,而且包含了更多有意义的语义信息,可以用于心肌梗死的检测。实验结果表明,ECGCM检测心肌梗死的灵敏度和特异性分别提高了2%和20.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ECG codebook model for Myocardial Infarction detection
ECG is a kind of high dimensional dataset and the useful information of illness only exists in few heartbeats. To achieve a good classification performance, most existing approaches used features proposed by human experts, and there is no approach for automatic useful feature extraction. To solve that problem, we propose an ECG Codebook Model (ECGCM) which automatically builds a small number of codes to represent the high dimension ECG data. ECGCM not only greatly reduces the dimension of ECG, but also contains more meaningful semantic information for Myocardial Infarction detection. Our experiment results show that ECGCM achieves 2% and 20.5% improvement in sensitivity and specificity respectively in Myocardial Infarction detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Graph based K-nearest neighbor minutiae clustering for fingerprint recognition Applications of artificial intelligence technologies in credit scoring: A survey of literature Construction of linear dynamic gene regulatory network based on feedforward neural network A new dynamic clustering method based on nuclear field A multi-objective ant colony optimization algorithm based on the Physarum-inspired mathematical model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1