克拉克电极测定溶解氢浓度

D. Mislov, M. Cifrek, I. Krois, H. Džapo
{"title":"克拉克电极测定溶解氢浓度","authors":"D. Mislov, M. Cifrek, I. Krois, H. Džapo","doi":"10.1109/SAS.2015.7133656","DOIUrl":null,"url":null,"abstract":"Clark electrode is a well-known sensor for measuring concentration of dissolved oxygen in a water solution. This type of electrochemical sensor has an advantage of enabling detection of very low oxygen concentration. Although Clark electrode is typically used for measurement of dissolved oxygen, our research showed that the same electrodes can be successfully applied for measurement of other dissolved gases. We investigated a possibility of applying the same principle to dissolved hydrogen concentration measurement, and also the possibility of simultaneous measurement of both dissolved oxygen and hydrogen concentrations in the same water solution. We adapted Clark electrode sensor to measure dissolved hydrogen by choosing the appropriate polarization voltage level. We studied the influences on dissolved hydrogen measurement, such as choice of polarization voltage, temperature, salinity, and solution pH. We investigated the polarization voltage influence on sensor sensitivity and observed hysteresis in sensitivity that occurs with cyclic increase and decrease of polarization voltage. We proposed and described measurement setup that was used for experimental verification of proposed measurement method and sensor characteristics. The measurement results of sensor characteristics are presented, regarding the influences of polarization voltage, temperature dependence, salinity (fresh water and 380/00 NaCl solution) and pH value (6, 7, 8).","PeriodicalId":384041,"journal":{"name":"2015 IEEE Sensors Applications Symposium (SAS)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Measurement of dissolved hydrogen concentration with clark electrode\",\"authors\":\"D. Mislov, M. Cifrek, I. Krois, H. Džapo\",\"doi\":\"10.1109/SAS.2015.7133656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clark electrode is a well-known sensor for measuring concentration of dissolved oxygen in a water solution. This type of electrochemical sensor has an advantage of enabling detection of very low oxygen concentration. Although Clark electrode is typically used for measurement of dissolved oxygen, our research showed that the same electrodes can be successfully applied for measurement of other dissolved gases. We investigated a possibility of applying the same principle to dissolved hydrogen concentration measurement, and also the possibility of simultaneous measurement of both dissolved oxygen and hydrogen concentrations in the same water solution. We adapted Clark electrode sensor to measure dissolved hydrogen by choosing the appropriate polarization voltage level. We studied the influences on dissolved hydrogen measurement, such as choice of polarization voltage, temperature, salinity, and solution pH. We investigated the polarization voltage influence on sensor sensitivity and observed hysteresis in sensitivity that occurs with cyclic increase and decrease of polarization voltage. We proposed and described measurement setup that was used for experimental verification of proposed measurement method and sensor characteristics. The measurement results of sensor characteristics are presented, regarding the influences of polarization voltage, temperature dependence, salinity (fresh water and 380/00 NaCl solution) and pH value (6, 7, 8).\",\"PeriodicalId\":384041,\"journal\":{\"name\":\"2015 IEEE Sensors Applications Symposium (SAS)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Sensors Applications Symposium (SAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAS.2015.7133656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS.2015.7133656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

克拉克电极是一种著名的用于测量水溶液中溶解氧浓度的传感器。这种类型的电化学传感器的优点是能够检测非常低的氧浓度。虽然克拉克电极通常用于测量溶解氧,但我们的研究表明,相同的电极可以成功地应用于测量其他溶解气体。我们研究了将相同原理应用于溶解氢浓度测量的可能性,以及同时测量同一水溶液中溶解氧和氢浓度的可能性。通过选择合适的极化电压电平,将Clark电极传感器应用于溶解氢的测量。研究了极化电压的选择、温度、盐度、溶液ph等对溶解氢测量的影响,考察了极化电压对传感器灵敏度的影响,并观察了极化电压随循环升高和降低而出现的灵敏度滞后现象。我们提出并描述了用于实验验证所提出的测量方法和传感器特性的测量装置。给出了极化电压、温度依赖性、盐度(淡水和380/00 NaCl溶液)和pH值(6,7,8)对传感器特性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Measurement of dissolved hydrogen concentration with clark electrode
Clark electrode is a well-known sensor for measuring concentration of dissolved oxygen in a water solution. This type of electrochemical sensor has an advantage of enabling detection of very low oxygen concentration. Although Clark electrode is typically used for measurement of dissolved oxygen, our research showed that the same electrodes can be successfully applied for measurement of other dissolved gases. We investigated a possibility of applying the same principle to dissolved hydrogen concentration measurement, and also the possibility of simultaneous measurement of both dissolved oxygen and hydrogen concentrations in the same water solution. We adapted Clark electrode sensor to measure dissolved hydrogen by choosing the appropriate polarization voltage level. We studied the influences on dissolved hydrogen measurement, such as choice of polarization voltage, temperature, salinity, and solution pH. We investigated the polarization voltage influence on sensor sensitivity and observed hysteresis in sensitivity that occurs with cyclic increase and decrease of polarization voltage. We proposed and described measurement setup that was used for experimental verification of proposed measurement method and sensor characteristics. The measurement results of sensor characteristics are presented, regarding the influences of polarization voltage, temperature dependence, salinity (fresh water and 380/00 NaCl solution) and pH value (6, 7, 8).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Microimmune algorithm for sensor network localization Empirical evaluation of OI-MAC: Direct interconnection between wireless sensor networks for collaborative monitoring DiverNet — A network of inertial sensors for real time diver visualization Sensor fusion for intrusion detection under false alarm constraints Fault tolerant and scalable IoT-based architecture for health monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1