基于无人机的能量约束数据采集系统的轨迹、时间和采集调度优化

Kehao Wang, Zheng Tang, Pei Liu, Yirui Cong, Xiangke Wang, Dejin Kong, Yitong Li
{"title":"基于无人机的能量约束数据采集系统的轨迹、时间和采集调度优化","authors":"Kehao Wang, Zheng Tang, Pei Liu, Yirui Cong, Xiangke Wang, Dejin Kong, Yitong Li","doi":"10.1109/iccc52777.2021.9580291","DOIUrl":null,"url":null,"abstract":"Our paper considers a scenario where an UAV collects data from multiple ground nodes (GNs). The UAV flying energy consumption and the data transmit energy consumption of GNs are regarded as a whole constraint. Through jointly optimizing the data collection scheduling, UAV trajectory, data collection time and data transmit power of GNs, we propose an optimization problem to maximize the minimum amount of data collected from GNs, which improves the fairness of data collected from each GN and reduce data collection time corresponding to the obtained trajectory. Because the formulated problem is non-convex, we first break it down into several subproblems, and then an iterative optimization algorithm is proposed to deal with the above problems through applying successive convex approximation (SCA) technique and block coordinate descent (BCD) method. Simulations show that the optimization algorithm accomplishes the above goal vary well.","PeriodicalId":425118,"journal":{"name":"2021 IEEE/CIC International Conference on Communications in China (ICCC)","volume":"207 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"UAV-Based and Energy-Constrained Data Collection System with Trajectory, Time, and Collection Scheduling Optimization\",\"authors\":\"Kehao Wang, Zheng Tang, Pei Liu, Yirui Cong, Xiangke Wang, Dejin Kong, Yitong Li\",\"doi\":\"10.1109/iccc52777.2021.9580291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our paper considers a scenario where an UAV collects data from multiple ground nodes (GNs). The UAV flying energy consumption and the data transmit energy consumption of GNs are regarded as a whole constraint. Through jointly optimizing the data collection scheduling, UAV trajectory, data collection time and data transmit power of GNs, we propose an optimization problem to maximize the minimum amount of data collected from GNs, which improves the fairness of data collected from each GN and reduce data collection time corresponding to the obtained trajectory. Because the formulated problem is non-convex, we first break it down into several subproblems, and then an iterative optimization algorithm is proposed to deal with the above problems through applying successive convex approximation (SCA) technique and block coordinate descent (BCD) method. Simulations show that the optimization algorithm accomplishes the above goal vary well.\",\"PeriodicalId\":425118,\"journal\":{\"name\":\"2021 IEEE/CIC International Conference on Communications in China (ICCC)\",\"volume\":\"207 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/CIC International Conference on Communications in China (ICCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iccc52777.2021.9580291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CIC International Conference on Communications in China (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccc52777.2021.9580291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文考虑了无人机从多个地面节点(gn)收集数据的场景。将无人机的飞行能耗和GNs的数据传输能耗视为一个整体约束。通过对GN的数据采集调度、无人机轨迹、数据采集时间和数据传输功率进行联合优化,提出了从GN采集数据量最小最大化的优化问题,提高了每个GN采集数据的公平性,减少了所获得轨迹对应的数据采集时间。由于所述问题为非凸问题,我们首先将其分解为若干子问题,然后利用逐次凸逼近(SCA)技术和块坐标下降(BCD)方法提出了一种迭代优化算法来处理上述问题。仿真结果表明,该优化算法较好地实现了上述目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
UAV-Based and Energy-Constrained Data Collection System with Trajectory, Time, and Collection Scheduling Optimization
Our paper considers a scenario where an UAV collects data from multiple ground nodes (GNs). The UAV flying energy consumption and the data transmit energy consumption of GNs are regarded as a whole constraint. Through jointly optimizing the data collection scheduling, UAV trajectory, data collection time and data transmit power of GNs, we propose an optimization problem to maximize the minimum amount of data collected from GNs, which improves the fairness of data collected from each GN and reduce data collection time corresponding to the obtained trajectory. Because the formulated problem is non-convex, we first break it down into several subproblems, and then an iterative optimization algorithm is proposed to deal with the above problems through applying successive convex approximation (SCA) technique and block coordinate descent (BCD) method. Simulations show that the optimization algorithm accomplishes the above goal vary well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Group-oriented Handover Authentication Scheme in MEC-Enabled 5G Networks Joint Task Secure Offloading and Resource Allocation for Multi-MEC Server to Improve User QoE Dueling-DDQN Based Virtual Machine Placement Algorithm for Cloud Computing Systems Predictive Beam Tracking with Cooperative Sensing for Vehicle-to-Infrastructure Communications Age-aware Communication Strategy in Federated Learning with Energy Harvesting Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1