水处理系统异常检测的无监督框架

Mayra Alexandra Macas Carrasco, Chunming Wu
{"title":"水处理系统异常检测的无监督框架","authors":"Mayra Alexandra Macas Carrasco, Chunming Wu","doi":"10.1109/ICMLA.2019.00212","DOIUrl":null,"url":null,"abstract":"Current Cyber-Physical Systems (CPSs) are sophisticated, complex, and equipped with networked sensors and actuators. As such, they have become further exposed to cyber-attacks. Recent catastrophic events have demonstrated that standard, human-based management of anomaly detection in complex systems is not efficient enough and have underlined the significance of automated detection, intelligent and rapid response. Nevertheless, existing anomaly detection frameworks usually are not capable of dealing with the dynamic and complicated nature of the CPSs. In this study, we introduce an unsupervised framework for anomaly detection based on an Attention-based Spatio-Temporal Autoencoder. In particular, we first construct statistical correlation matrices to characterize the system status across different time steps. Next, a 2D convolutional encoder is employed to encode the patterns of the correlation matrices, whereas an Attention-based Convolutional LSTM Encoder-Decoder (ConvLSTM-ED) is used to capture the temporal dependencies. More precisely, we introduce an input attention mechanism to adaptively select the most significant input features at each time step. Finally, the 2D convolutional decoder reconstructs the correlation matrices. The differences between the reconstructed correlation matrices and the original ones are used as indicators of anomalies. Extensive experimental analysis on data collected from all six stages of Secure Water Treatment (SWaT) testbed, a scaled-down version of a real-world industrial water treatment plant, demonstrates that the proposed model outperforms the state-of-the-art baseline techniques.","PeriodicalId":436714,"journal":{"name":"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"An Unsupervised Framework for Anomaly Detection in a Water Treatment System\",\"authors\":\"Mayra Alexandra Macas Carrasco, Chunming Wu\",\"doi\":\"10.1109/ICMLA.2019.00212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current Cyber-Physical Systems (CPSs) are sophisticated, complex, and equipped with networked sensors and actuators. As such, they have become further exposed to cyber-attacks. Recent catastrophic events have demonstrated that standard, human-based management of anomaly detection in complex systems is not efficient enough and have underlined the significance of automated detection, intelligent and rapid response. Nevertheless, existing anomaly detection frameworks usually are not capable of dealing with the dynamic and complicated nature of the CPSs. In this study, we introduce an unsupervised framework for anomaly detection based on an Attention-based Spatio-Temporal Autoencoder. In particular, we first construct statistical correlation matrices to characterize the system status across different time steps. Next, a 2D convolutional encoder is employed to encode the patterns of the correlation matrices, whereas an Attention-based Convolutional LSTM Encoder-Decoder (ConvLSTM-ED) is used to capture the temporal dependencies. More precisely, we introduce an input attention mechanism to adaptively select the most significant input features at each time step. Finally, the 2D convolutional decoder reconstructs the correlation matrices. The differences between the reconstructed correlation matrices and the original ones are used as indicators of anomalies. Extensive experimental analysis on data collected from all six stages of Secure Water Treatment (SWaT) testbed, a scaled-down version of a real-world industrial water treatment plant, demonstrates that the proposed model outperforms the state-of-the-art baseline techniques.\",\"PeriodicalId\":436714,\"journal\":{\"name\":\"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2019.00212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2019.00212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

当前的信息物理系统(cps)是复杂的、复杂的,并且配备了网络传感器和执行器。因此,它们进一步暴露在网络攻击之下。最近的灾难性事件表明,在复杂系统中,标准的、以人为基础的异常检测管理是不够有效的,并强调了自动检测、智能和快速响应的重要性。然而,现有的异常检测框架通常无法处理cps的动态性和复杂性。在本研究中,我们引入了一种基于注意力的时空自编码器的无监督异常检测框架。特别是,我们首先构建统计相关矩阵来表征系统在不同时间步长的状态。接下来,使用二维卷积编码器对相关矩阵的模式进行编码,而使用基于注意力的卷积LSTM编码器-解码器(ConvLSTM-ED)来捕获时间依赖性。更准确地说,我们引入了一种输入注意机制来自适应地选择每个时间步最重要的输入特征。最后,二维卷积解码器重建相关矩阵。将重建的相关矩阵与原始相关矩阵的差异作为异常指标。对从安全水处理(SWaT)测试平台(一个实际工业水处理厂的缩小版)的所有六个阶段收集的数据进行了广泛的实验分析,表明所提出的模型优于最先进的基线技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Unsupervised Framework for Anomaly Detection in a Water Treatment System
Current Cyber-Physical Systems (CPSs) are sophisticated, complex, and equipped with networked sensors and actuators. As such, they have become further exposed to cyber-attacks. Recent catastrophic events have demonstrated that standard, human-based management of anomaly detection in complex systems is not efficient enough and have underlined the significance of automated detection, intelligent and rapid response. Nevertheless, existing anomaly detection frameworks usually are not capable of dealing with the dynamic and complicated nature of the CPSs. In this study, we introduce an unsupervised framework for anomaly detection based on an Attention-based Spatio-Temporal Autoencoder. In particular, we first construct statistical correlation matrices to characterize the system status across different time steps. Next, a 2D convolutional encoder is employed to encode the patterns of the correlation matrices, whereas an Attention-based Convolutional LSTM Encoder-Decoder (ConvLSTM-ED) is used to capture the temporal dependencies. More precisely, we introduce an input attention mechanism to adaptively select the most significant input features at each time step. Finally, the 2D convolutional decoder reconstructs the correlation matrices. The differences between the reconstructed correlation matrices and the original ones are used as indicators of anomalies. Extensive experimental analysis on data collected from all six stages of Secure Water Treatment (SWaT) testbed, a scaled-down version of a real-world industrial water treatment plant, demonstrates that the proposed model outperforms the state-of-the-art baseline techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated Stenosis Classification of Carotid Artery Sonography using Deep Neural Networks Hybrid Condition Monitoring for Power Electronic Systems Time Series Anomaly Detection from a Markov Chain Perspective Anyone here? Smart Embedded Low-Resolution Omnidirectional Video Sensor to Measure Room Occupancy Deep Learning with Domain Randomization for Optimal Filtering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1