INDIGO-DataCloud项目中大型科学数据集的大数据分析

S. Fiore, Cosimo Palazzo, Alessandro D'Anca, D. Elia, E. Londero, C. Knapic, S. Monna, N. Marcucci, F. Aguilar, M. Plóciennik, J. M. D. Lucas, G. Aloisio
{"title":"INDIGO-DataCloud项目中大型科学数据集的大数据分析","authors":"S. Fiore, Cosimo Palazzo, Alessandro D'Anca, D. Elia, E. Londero, C. Knapic, S. Monna, N. Marcucci, F. Aguilar, M. Plóciennik, J. M. D. Lucas, G. Aloisio","doi":"10.1145/3075564.3078884","DOIUrl":null,"url":null,"abstract":"In the context of the EU H2020 INDIGO-DataCloud project several use case on large scale scientific data analysis regarding different research communities have been implemented. All of them require the availability of large amount of data related to either output of simulations or observed data from sensors and need scientific (big) data solutions to run data analysis experiments. More specifically, the paper presents the case studies related to the following research communities: (i) the European Multidisciplinary Seafloor and water column Observatory (INGV-EMSO), (ii) the Large Binocular Telescope, (iii) LifeWatch, and (iv) the European Network for Earth System Modelling (ENES).","PeriodicalId":398898,"journal":{"name":"Proceedings of the Computing Frontiers Conference","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Big Data Analytics on Large-Scale Scientific Datasets in the INDIGO-DataCloud Project\",\"authors\":\"S. Fiore, Cosimo Palazzo, Alessandro D'Anca, D. Elia, E. Londero, C. Knapic, S. Monna, N. Marcucci, F. Aguilar, M. Plóciennik, J. M. D. Lucas, G. Aloisio\",\"doi\":\"10.1145/3075564.3078884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the context of the EU H2020 INDIGO-DataCloud project several use case on large scale scientific data analysis regarding different research communities have been implemented. All of them require the availability of large amount of data related to either output of simulations or observed data from sensors and need scientific (big) data solutions to run data analysis experiments. More specifically, the paper presents the case studies related to the following research communities: (i) the European Multidisciplinary Seafloor and water column Observatory (INGV-EMSO), (ii) the Large Binocular Telescope, (iii) LifeWatch, and (iv) the European Network for Earth System Modelling (ENES).\",\"PeriodicalId\":398898,\"journal\":{\"name\":\"Proceedings of the Computing Frontiers Conference\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Computing Frontiers Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3075564.3078884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Computing Frontiers Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3075564.3078884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在欧盟H2020 INDIGO-DataCloud项目的背景下,已经实施了针对不同研究社区的大规模科学数据分析的几个用例。所有这些都需要与模拟输出或传感器观测数据相关的大量数据的可用性,并且需要科学的(大)数据解决方案来运行数据分析实验。更具体地说,本文介绍了与以下研究团体相关的案例研究:(i)欧洲多学科海底和水柱观测站(INGV-EMSO), (ii)大型双筒望远镜,(iii)生命观察,(iv)欧洲地球系统建模网络(ENES)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Big Data Analytics on Large-Scale Scientific Datasets in the INDIGO-DataCloud Project
In the context of the EU H2020 INDIGO-DataCloud project several use case on large scale scientific data analysis regarding different research communities have been implemented. All of them require the availability of large amount of data related to either output of simulations or observed data from sensors and need scientific (big) data solutions to run data analysis experiments. More specifically, the paper presents the case studies related to the following research communities: (i) the European Multidisciplinary Seafloor and water column Observatory (INGV-EMSO), (ii) the Large Binocular Telescope, (iii) LifeWatch, and (iv) the European Network for Earth System Modelling (ENES).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware Support for Secure Stream Processing in Cloud Environments Private inter-network routing for Wireless Sensor Networks and the Internet of Things Analytical Performance Modeling and Validation of Intel's Xeon Phi Architecture Design of S-boxes Defined with Cellular Automata Rules Cloud Workload Prediction by Means of Simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1