低镜头学习从虚构的3D模型

Frederik Pahde, M. Puscas, Jannik Wolff, T. Klein, N. Sebe, Moin Nabi
{"title":"低镜头学习从虚构的3D模型","authors":"Frederik Pahde, M. Puscas, Jannik Wolff, T. Klein, N. Sebe, Moin Nabi","doi":"10.1109/WACV.2019.00109","DOIUrl":null,"url":null,"abstract":"Since the advent of deep learning, neural networks have demonstrated remarkable results in many visual recognition tasks, constantly pushing the limits. However, the state-of-the-art approaches are largely unsuitable in scarce data regimes. To address this shortcoming, this paper proposes employing a 3D model, which is derived from training images. Such a model can then be used to hallucinate novel viewpoints and poses for the scarce samples of the few-shot learning scenario. A self-paced learning approach allows for the selection of a diverse set of high-quality images, which facilitates the training of a classifier. The performance of the proposed approach is showcased on the fine-grained CUB-200-2011 dataset in a few-shot setting and significantly improves our baseline accuracy.","PeriodicalId":436637,"journal":{"name":"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)","volume":"343 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Low-Shot Learning From Imaginary 3D Model\",\"authors\":\"Frederik Pahde, M. Puscas, Jannik Wolff, T. Klein, N. Sebe, Moin Nabi\",\"doi\":\"10.1109/WACV.2019.00109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since the advent of deep learning, neural networks have demonstrated remarkable results in many visual recognition tasks, constantly pushing the limits. However, the state-of-the-art approaches are largely unsuitable in scarce data regimes. To address this shortcoming, this paper proposes employing a 3D model, which is derived from training images. Such a model can then be used to hallucinate novel viewpoints and poses for the scarce samples of the few-shot learning scenario. A self-paced learning approach allows for the selection of a diverse set of high-quality images, which facilitates the training of a classifier. The performance of the proposed approach is showcased on the fine-grained CUB-200-2011 dataset in a few-shot setting and significantly improves our baseline accuracy.\",\"PeriodicalId\":436637,\"journal\":{\"name\":\"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)\",\"volume\":\"343 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV.2019.00109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2019.00109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

自深度学习出现以来,神经网络在许多视觉识别任务中表现出了显著的效果,不断突破极限。然而,最先进的方法在数据稀缺的情况下基本上不适合。为了解决这一问题,本文提出采用基于训练图像的三维模型。这样的模型可以用来为少数镜头学习场景的稀缺样本产生新的观点和姿势。自定节奏的学习方法允许选择一组不同的高质量图像,这有助于分类器的训练。该方法的性能在细粒度的CUB-200-2011数据集上得到了验证,并显著提高了我们的基线精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low-Shot Learning From Imaginary 3D Model
Since the advent of deep learning, neural networks have demonstrated remarkable results in many visual recognition tasks, constantly pushing the limits. However, the state-of-the-art approaches are largely unsuitable in scarce data regimes. To address this shortcoming, this paper proposes employing a 3D model, which is derived from training images. Such a model can then be used to hallucinate novel viewpoints and poses for the scarce samples of the few-shot learning scenario. A self-paced learning approach allows for the selection of a diverse set of high-quality images, which facilitates the training of a classifier. The performance of the proposed approach is showcased on the fine-grained CUB-200-2011 dataset in a few-shot setting and significantly improves our baseline accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ancient Painting to Natural Image: A New Solution for Painting Processing GAN-Based Pose-Aware Regulation for Video-Based Person Re-Identification Coupled Generative Adversarial Network for Continuous Fine-Grained Action Segmentation Dense 3D Point Cloud Reconstruction Using a Deep Pyramid Network 3D Reconstruction and Texture Optimization Using a Sparse Set of RGB-D Cameras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1