基于延迟约束的H.265/HEVC速率控制

Honghao Gao, Yuan Zhang
{"title":"基于延迟约束的H.265/HEVC速率控制","authors":"Honghao Gao, Yuan Zhang","doi":"10.1109/icisfall51598.2021.9627398","DOIUrl":null,"url":null,"abstract":"This paper presents a Reinforcement Learning (RL) based rate control scheme for low latency video communication with High Efficiency Video Coding (HEVC). To avoid buffer overflow and underflow with a small buffer size constraint, we propose a new bit allocation and Quantization Parameter (QP) decision method based on the buffer status to control the buffer occupancy. Different from the heuristics design, the proposed RL-based rate control algorithm uses a neural network to allocate the target bit number and determine the QP value. Experimental results show that the proposed scheme effectively reduces the bit rate fluctuation and can avoid buffer overflow and underflow, which ensures a higher control accuracy and more consistent video quality than other existing methods.","PeriodicalId":240142,"journal":{"name":"2021 IEEE/ACIS 20th International Fall Conference on Computer and Information Science (ICIS Fall)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Rate Control with Delay Constraint for H.265/HEVC\",\"authors\":\"Honghao Gao, Yuan Zhang\",\"doi\":\"10.1109/icisfall51598.2021.9627398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a Reinforcement Learning (RL) based rate control scheme for low latency video communication with High Efficiency Video Coding (HEVC). To avoid buffer overflow and underflow with a small buffer size constraint, we propose a new bit allocation and Quantization Parameter (QP) decision method based on the buffer status to control the buffer occupancy. Different from the heuristics design, the proposed RL-based rate control algorithm uses a neural network to allocate the target bit number and determine the QP value. Experimental results show that the proposed scheme effectively reduces the bit rate fluctuation and can avoid buffer overflow and underflow, which ensures a higher control accuracy and more consistent video quality than other existing methods.\",\"PeriodicalId\":240142,\"journal\":{\"name\":\"2021 IEEE/ACIS 20th International Fall Conference on Computer and Information Science (ICIS Fall)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/ACIS 20th International Fall Conference on Computer and Information Science (ICIS Fall)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icisfall51598.2021.9627398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACIS 20th International Fall Conference on Computer and Information Science (ICIS Fall)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icisfall51598.2021.9627398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于强化学习(RL)的高效视频编码(HEVC)低延迟视频通信速率控制方案。为了在较小的缓冲区大小约束下避免缓冲区溢出和下溢,我们提出了一种新的基于缓冲区状态的位分配和量化参数(QP)决策方法来控制缓冲区占用。与启发式设计不同,本文提出的基于rl的速率控制算法使用神经网络来分配目标比特数并确定QP值。实验结果表明,该方案有效地降低了码率波动,避免了缓冲区溢出和下溢,保证了比现有方法更高的控制精度和更一致的视频质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rate Control with Delay Constraint for H.265/HEVC
This paper presents a Reinforcement Learning (RL) based rate control scheme for low latency video communication with High Efficiency Video Coding (HEVC). To avoid buffer overflow and underflow with a small buffer size constraint, we propose a new bit allocation and Quantization Parameter (QP) decision method based on the buffer status to control the buffer occupancy. Different from the heuristics design, the proposed RL-based rate control algorithm uses a neural network to allocate the target bit number and determine the QP value. Experimental results show that the proposed scheme effectively reduces the bit rate fluctuation and can avoid buffer overflow and underflow, which ensures a higher control accuracy and more consistent video quality than other existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Music Playback Control System Based on Facial Expression Recognition Experiences in Developing and Testing BBC Micro: bit Games in a K-12 Coding Club during the COVID-19 Pandemic A Void-Avoidable and Reliability-Based Opportunistic Energy Efficiency Routing for Mobile Sparse Underwater Acoustic Sensor Network A Survey of GPGPU Parallel Processing Architecture Performance Optimization The COVID-19 Question Answering System Based on Knowledge Graph
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1