使用机器学习ARIMA来预测加密货币的价格

S. A. Alahmari
{"title":"使用机器学习ARIMA来预测加密货币的价格","authors":"S. A. Alahmari","doi":"10.22042/ISECURE.2019.11.0.18","DOIUrl":null,"url":null,"abstract":"The increasing volatility in pricing and growing potential for profit in digital currency have made predicting the price of cryptocurrency a very attractive research topic. Several studies have already been conducted using various machine-learning models to predict crypto currency prices. This study presented in this paper applied a classic Autoregressive Integrated Moving Average(ARIMA) model to predict the prices of the three major cryptocurrencies âAT Bitcoin, XRP and Ethereum âAT using daily, weekly and monthly time series. The results demonstrated that ARIMA outperforms most other methods in predicting cryptocurrency prices on a daily time series basis in terms of mean absolute error (MAE), mean squared error (MSE) and root mean squared error(RMSE).","PeriodicalId":436674,"journal":{"name":"ISC Int. J. Inf. Secur.","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Using Machine Learning ARIMA to Predict the Price of Cryptocurrencies\",\"authors\":\"S. A. Alahmari\",\"doi\":\"10.22042/ISECURE.2019.11.0.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing volatility in pricing and growing potential for profit in digital currency have made predicting the price of cryptocurrency a very attractive research topic. Several studies have already been conducted using various machine-learning models to predict crypto currency prices. This study presented in this paper applied a classic Autoregressive Integrated Moving Average(ARIMA) model to predict the prices of the three major cryptocurrencies âAT Bitcoin, XRP and Ethereum âAT using daily, weekly and monthly time series. The results demonstrated that ARIMA outperforms most other methods in predicting cryptocurrency prices on a daily time series basis in terms of mean absolute error (MAE), mean squared error (MSE) and root mean squared error(RMSE).\",\"PeriodicalId\":436674,\"journal\":{\"name\":\"ISC Int. J. Inf. Secur.\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISC Int. J. Inf. Secur.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22042/ISECURE.2019.11.0.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISC Int. J. Inf. Secur.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22042/ISECURE.2019.11.0.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

数字货币的价格波动越来越大,利润潜力越来越大,这使得预测加密货币的价格成为一个非常有吸引力的研究课题。已经有几项研究使用各种机器学习模型来预测加密货币的价格。本文提出的这项研究应用经典的自回归综合移动平均线(ARIMA)模型,使用每日、每周和每月的时间序列来预测三种主要加密货币比特币、瑞波币和以太坊的价格。结果表明,在平均绝对误差(MAE)、均方误差(MSE)和均方根误差(RMSE)方面,ARIMA在每日时间序列预测加密货币价格方面优于大多数其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using Machine Learning ARIMA to Predict the Price of Cryptocurrencies
The increasing volatility in pricing and growing potential for profit in digital currency have made predicting the price of cryptocurrency a very attractive research topic. Several studies have already been conducted using various machine-learning models to predict crypto currency prices. This study presented in this paper applied a classic Autoregressive Integrated Moving Average(ARIMA) model to predict the prices of the three major cryptocurrencies âAT Bitcoin, XRP and Ethereum âAT using daily, weekly and monthly time series. The results demonstrated that ARIMA outperforms most other methods in predicting cryptocurrency prices on a daily time series basis in terms of mean absolute error (MAE), mean squared error (MSE) and root mean squared error(RMSE).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
One-Shot Achievable Secrecy Rate Regions for Quantum Interference Wiretap Channel Quantum Multiple Access Wiretap Channel: On the One-Shot Achievable Secrecy Rate Regions Towards a Formal Approach for Detection of Vulnerabilities in the Android Permissions System Towards event aggregation for reducing the volume of logged events during IKC stages of APT attacks A Time Randomization-Based Countermeasure Against the Template Side-Channel Attack
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1