基于冲突的多智能体组合寻径的Steiner搜索

Z. Ren, S. Rathinam, H. Choset
{"title":"基于冲突的多智能体组合寻径的Steiner搜索","authors":"Z. Ren, S. Rathinam, H. Choset","doi":"10.15607/rss.2022.xviii.058","DOIUrl":null,"url":null,"abstract":"—Conventional Multi-Agent Path Finding (MAPF) problems aim to compute an ensemble of collision-free paths for multiple agents from their respective starting locations to pre-allocated destinations. This work considers a generalized version of MAPF called Multi-Agent Combinatorial Path Finding (MCPF) where agents must collectively visit a large number of intermediate target locations along their paths before arriving at destinations. This problem involves not only planning collision-free paths for multiple agents but also assigning targets and specifying the visiting order for each agent (i.e. multi-target sequencing). To solve the problem, we leverage the well-known Conflict-Based Search (CBS) for MAPF and propose a novel framework called Conflict-Based Steiner Search (CBSS). CBSS interleaves (1) the conflict resolving strategy in CBS to bypass the curse of dimensionality in MAPF and (2) multiple traveling salesman algorithms to handle the combinatorics in multi-target sequencing, to compute optimal or bounded sub-optimal paths for agents while visiting all the targets. Our extensive tests verify the advantage of CBSS over baseline approaches in terms of computing shorter paths and improving success rates within a runtime limit for up to 20 agents and 50 targets. We also evaluate CBSS with several MCPF variants, which demonstrates the generality of our problem formulation and the CBSS framework.","PeriodicalId":340265,"journal":{"name":"Robotics: Science and Systems XVIII","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Conflict-Based Steiner Search for Multi-Agent Combinatorial Path Finding\",\"authors\":\"Z. Ren, S. Rathinam, H. Choset\",\"doi\":\"10.15607/rss.2022.xviii.058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"—Conventional Multi-Agent Path Finding (MAPF) problems aim to compute an ensemble of collision-free paths for multiple agents from their respective starting locations to pre-allocated destinations. This work considers a generalized version of MAPF called Multi-Agent Combinatorial Path Finding (MCPF) where agents must collectively visit a large number of intermediate target locations along their paths before arriving at destinations. This problem involves not only planning collision-free paths for multiple agents but also assigning targets and specifying the visiting order for each agent (i.e. multi-target sequencing). To solve the problem, we leverage the well-known Conflict-Based Search (CBS) for MAPF and propose a novel framework called Conflict-Based Steiner Search (CBSS). CBSS interleaves (1) the conflict resolving strategy in CBS to bypass the curse of dimensionality in MAPF and (2) multiple traveling salesman algorithms to handle the combinatorics in multi-target sequencing, to compute optimal or bounded sub-optimal paths for agents while visiting all the targets. Our extensive tests verify the advantage of CBSS over baseline approaches in terms of computing shorter paths and improving success rates within a runtime limit for up to 20 agents and 50 targets. We also evaluate CBSS with several MCPF variants, which demonstrates the generality of our problem formulation and the CBSS framework.\",\"PeriodicalId\":340265,\"journal\":{\"name\":\"Robotics: Science and Systems XVIII\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics: Science and Systems XVIII\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15607/rss.2022.xviii.058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics: Science and Systems XVIII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15607/rss.2022.xviii.058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

传统的多智能体寻径(MAPF)问题旨在计算多个智能体从各自的起始位置到预分配目的地的无冲突路径集合。这项工作考虑了MAPF的一个广义版本,称为多智能体组合寻径(MCPF),其中智能体必须在到达目的地之前沿着它们的路径集体访问大量的中间目标位置。该问题不仅涉及多个智能体的无碰撞路径规划,而且涉及到分配目标和指定每个智能体的访问顺序(即多目标排序)。为了解决这个问题,我们利用著名的基于冲突的搜索(CBS)来解决MAPF,并提出了一个新的框架,称为基于冲突的斯坦纳搜索(CBSS)。CBSS将(1)CBS中的冲突解决策略与(2)多个旅行推销员算法交织在一起,以处理多目标排序中的组合问题,在访问所有目标时计算agent的最优路径或有界次最优路径。我们的广泛测试验证了CBSS在计算较短路径和提高运行时限制内最多20个代理和50个目标的成功率方面优于基线方法的优势。我们还用几个MCPF变量评估了CBSS,这证明了我们的问题表述和CBSS框架的通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Conflict-Based Steiner Search for Multi-Agent Combinatorial Path Finding
—Conventional Multi-Agent Path Finding (MAPF) problems aim to compute an ensemble of collision-free paths for multiple agents from their respective starting locations to pre-allocated destinations. This work considers a generalized version of MAPF called Multi-Agent Combinatorial Path Finding (MCPF) where agents must collectively visit a large number of intermediate target locations along their paths before arriving at destinations. This problem involves not only planning collision-free paths for multiple agents but also assigning targets and specifying the visiting order for each agent (i.e. multi-target sequencing). To solve the problem, we leverage the well-known Conflict-Based Search (CBS) for MAPF and propose a novel framework called Conflict-Based Steiner Search (CBSS). CBSS interleaves (1) the conflict resolving strategy in CBS to bypass the curse of dimensionality in MAPF and (2) multiple traveling salesman algorithms to handle the combinatorics in multi-target sequencing, to compute optimal or bounded sub-optimal paths for agents while visiting all the targets. Our extensive tests verify the advantage of CBSS over baseline approaches in terms of computing shorter paths and improving success rates within a runtime limit for up to 20 agents and 50 targets. We also evaluate CBSS with several MCPF variants, which demonstrates the generality of our problem formulation and the CBSS framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Underwater Robot-To-Human Communication Via Motion: Implementation and Full-Loop Human Interface Evaluation Meta Value Learning for Fast Policy-Centric Optimal Motion Planning A Learning-based Iterative Control Framework for Controlling a Robot Arm with Pneumatic Artificial Muscles Aerial Layouting: Design and Control of a Compliant and Actuated End-Effector for Precise In-flight Marking on Ceilings Occupancy-SLAM: Simultaneously Optimizing Robot Poses and Continuous Occupancy Map
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1