{"title":"使用信誉系统来检测大型动态网络中的故障","authors":"M. Veron, O. Marin, Sébastien Monnet, Pierre Sens","doi":"10.1109/ICPP.2015.18","DOIUrl":null,"url":null,"abstract":"Failure detection is a crucial service for dependable distributed systems. Traditional failure detector implementations usually target homogeneous and static configurations, as their performance relies heavily on the connectivity of each network node. In this paper we propose a new approach towards the implementation of failure detectors for large and dynamic networks: we study reputation systems as a means to detect failures. The reputation mechanism allows efficient node cooperation via the sharing of views about other nodes. Our experimental results show that a simple prototype of a reputation-based detection service performs better than other known adaptive failure detectors, with improved flexibility. It can thus be used in a dynamic environment with a large and variable number of nodes.","PeriodicalId":423007,"journal":{"name":"2015 44th International Conference on Parallel Processing","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"RepFD - Using Reputation Systems to Detect Failures in Large Dynamic Networks\",\"authors\":\"M. Veron, O. Marin, Sébastien Monnet, Pierre Sens\",\"doi\":\"10.1109/ICPP.2015.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Failure detection is a crucial service for dependable distributed systems. Traditional failure detector implementations usually target homogeneous and static configurations, as their performance relies heavily on the connectivity of each network node. In this paper we propose a new approach towards the implementation of failure detectors for large and dynamic networks: we study reputation systems as a means to detect failures. The reputation mechanism allows efficient node cooperation via the sharing of views about other nodes. Our experimental results show that a simple prototype of a reputation-based detection service performs better than other known adaptive failure detectors, with improved flexibility. It can thus be used in a dynamic environment with a large and variable number of nodes.\",\"PeriodicalId\":423007,\"journal\":{\"name\":\"2015 44th International Conference on Parallel Processing\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 44th International Conference on Parallel Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPP.2015.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 44th International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2015.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
RepFD - Using Reputation Systems to Detect Failures in Large Dynamic Networks
Failure detection is a crucial service for dependable distributed systems. Traditional failure detector implementations usually target homogeneous and static configurations, as their performance relies heavily on the connectivity of each network node. In this paper we propose a new approach towards the implementation of failure detectors for large and dynamic networks: we study reputation systems as a means to detect failures. The reputation mechanism allows efficient node cooperation via the sharing of views about other nodes. Our experimental results show that a simple prototype of a reputation-based detection service performs better than other known adaptive failure detectors, with improved flexibility. It can thus be used in a dynamic environment with a large and variable number of nodes.