{"title":"以氯化钾为基础的天然深共晶溶剂作为添加剂,革新页岩钻井","authors":"Muhammad Hammad Rasool, Maqsood Ahmad","doi":"10.1007/s13202-023-01700-8","DOIUrl":null,"url":null,"abstract":"Abstract Shale instability is a significant problem, accounting for approximately 70% of wellbore challenges during drilling operations. To address this issue, shale inhibitors are commonly added to drilling mud to stabilize the encountered shale formations. Ionic liquids and deep eutectic solvents have been recognized as effective shale inhibitors due to their environmental friendliness and effectiveness. However, despite their advantages, these solutions still lack full environmental sustainability, leading researchers to explore more natural alternatives like Natural Deep Eutectic Solvents (NADES). This study focuses on the synthesis and application of a NADES composed of Potassium Chloride (KCl) and glycerine, aiming to enhance the environmental profile and efficacy of shale inhibitors. The NADES was prepared with a 1:8 molar ratio at a temperature of 60 °C. Characterization analyses, including Fourier Transform Infrared and Thermogravimetric Analysis, confirmed the formation of bonds between –(OH) and Cl − and demonstrated the NADES's thermal stability up to 200 °C. Incorporating 3% NADES into water-based mud, prepared following API 13B-1 standards, resulted in significant improvements in mud rheology. Specifically, the addition of 3% NADES reduced filtrate volume by 14.2% and mud cake thickness by 19.2%. Furthermore, the 3% NADES exhibited remarkable inhibition of clay swelling by 69.23% and demonstrated a shale recovery rate of 58%. When compared with 3% KCl and 3% 1-ethyl-3-methylimidazolium chloride (EMIM-Cl), the NADES-based mud outperformed both in terms of efficacy. These findings were further supported by additional analyses, including d-spacing measurements (XRD), Zeta Potential, Surface tension, and Field Emission Scanning Electron Microscopy. Additionally, the rheological behavior of the NADES-based mud aligned with the Yield Power Law at both 25 °C and 100 °C. The study's findings contribute to the advancement of greener drilling practices and highlight the applicability of KCl-based NADES as a potential drilling fluid additive.","PeriodicalId":16723,"journal":{"name":"Journal of Petroleum Exploration and Production Technology","volume":"55 1","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revolutionizing shale drilling with potassium chloride-based natural deep eutectic solvent as an additive\",\"authors\":\"Muhammad Hammad Rasool, Maqsood Ahmad\",\"doi\":\"10.1007/s13202-023-01700-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Shale instability is a significant problem, accounting for approximately 70% of wellbore challenges during drilling operations. To address this issue, shale inhibitors are commonly added to drilling mud to stabilize the encountered shale formations. Ionic liquids and deep eutectic solvents have been recognized as effective shale inhibitors due to their environmental friendliness and effectiveness. However, despite their advantages, these solutions still lack full environmental sustainability, leading researchers to explore more natural alternatives like Natural Deep Eutectic Solvents (NADES). This study focuses on the synthesis and application of a NADES composed of Potassium Chloride (KCl) and glycerine, aiming to enhance the environmental profile and efficacy of shale inhibitors. The NADES was prepared with a 1:8 molar ratio at a temperature of 60 °C. Characterization analyses, including Fourier Transform Infrared and Thermogravimetric Analysis, confirmed the formation of bonds between –(OH) and Cl − and demonstrated the NADES's thermal stability up to 200 °C. Incorporating 3% NADES into water-based mud, prepared following API 13B-1 standards, resulted in significant improvements in mud rheology. Specifically, the addition of 3% NADES reduced filtrate volume by 14.2% and mud cake thickness by 19.2%. Furthermore, the 3% NADES exhibited remarkable inhibition of clay swelling by 69.23% and demonstrated a shale recovery rate of 58%. When compared with 3% KCl and 3% 1-ethyl-3-methylimidazolium chloride (EMIM-Cl), the NADES-based mud outperformed both in terms of efficacy. These findings were further supported by additional analyses, including d-spacing measurements (XRD), Zeta Potential, Surface tension, and Field Emission Scanning Electron Microscopy. Additionally, the rheological behavior of the NADES-based mud aligned with the Yield Power Law at both 25 °C and 100 °C. The study's findings contribute to the advancement of greener drilling practices and highlight the applicability of KCl-based NADES as a potential drilling fluid additive.\",\"PeriodicalId\":16723,\"journal\":{\"name\":\"Journal of Petroleum Exploration and Production Technology\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Petroleum Exploration and Production Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13202-023-01700-8\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum Exploration and Production Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13202-023-01700-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Revolutionizing shale drilling with potassium chloride-based natural deep eutectic solvent as an additive
Abstract Shale instability is a significant problem, accounting for approximately 70% of wellbore challenges during drilling operations. To address this issue, shale inhibitors are commonly added to drilling mud to stabilize the encountered shale formations. Ionic liquids and deep eutectic solvents have been recognized as effective shale inhibitors due to their environmental friendliness and effectiveness. However, despite their advantages, these solutions still lack full environmental sustainability, leading researchers to explore more natural alternatives like Natural Deep Eutectic Solvents (NADES). This study focuses on the synthesis and application of a NADES composed of Potassium Chloride (KCl) and glycerine, aiming to enhance the environmental profile and efficacy of shale inhibitors. The NADES was prepared with a 1:8 molar ratio at a temperature of 60 °C. Characterization analyses, including Fourier Transform Infrared and Thermogravimetric Analysis, confirmed the formation of bonds between –(OH) and Cl − and demonstrated the NADES's thermal stability up to 200 °C. Incorporating 3% NADES into water-based mud, prepared following API 13B-1 standards, resulted in significant improvements in mud rheology. Specifically, the addition of 3% NADES reduced filtrate volume by 14.2% and mud cake thickness by 19.2%. Furthermore, the 3% NADES exhibited remarkable inhibition of clay swelling by 69.23% and demonstrated a shale recovery rate of 58%. When compared with 3% KCl and 3% 1-ethyl-3-methylimidazolium chloride (EMIM-Cl), the NADES-based mud outperformed both in terms of efficacy. These findings were further supported by additional analyses, including d-spacing measurements (XRD), Zeta Potential, Surface tension, and Field Emission Scanning Electron Microscopy. Additionally, the rheological behavior of the NADES-based mud aligned with the Yield Power Law at both 25 °C and 100 °C. The study's findings contribute to the advancement of greener drilling practices and highlight the applicability of KCl-based NADES as a potential drilling fluid additive.
期刊介绍:
The Journal of Petroleum Exploration and Production Technology is an international open access journal that publishes original and review articles as well as book reviews on leading edge studies in the field of petroleum engineering, petroleum geology and exploration geophysics and the implementation of related technologies to the development and management of oil and gas reservoirs from their discovery through their entire production cycle.
Focusing on:
Reservoir characterization and modeling
Unconventional oil and gas reservoirs
Geophysics: Acquisition and near surface
Geophysics Modeling and Imaging
Geophysics: Interpretation
Geophysics: Processing
Production Engineering
Formation Evaluation
Reservoir Management
Petroleum Geology
Enhanced Recovery
Geomechanics
Drilling
Completions
The Journal of Petroleum Exploration and Production Technology is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies