通过纳米添加剂的混合共混提高菜籽油机械部件润滑油的性能

IF 3.1 3区 工程技术 Q2 ENGINEERING, MECHANICAL Lubricants Pub Date : 2023-11-06 DOI:10.3390/lubricants11110479
Belal G. Nassef, Florian Pape, Gerhard Poll
{"title":"通过纳米添加剂的混合共混提高菜籽油机械部件润滑油的性能","authors":"Belal G. Nassef, Florian Pape, Gerhard Poll","doi":"10.3390/lubricants11110479","DOIUrl":null,"url":null,"abstract":"Bio-lubricants have demonstrated promising tribological and physical properties, suggesting their potential advantages in the lubrication of critical machinery components. This study investigates the impact of using blended individual and hybrid nanoadditives, such as graphene nanoplatelets, ZnO, and an ionic liquid (IL) of Trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl)phosphinate, on the rheological, tribological, and physical characteristics of rapeseed oil. A commercial cutting fluid (BLASER Vasco 6000) (VB 6000) is used for comparison. The results revealed a substantial improvement in viscosity index (VI) values for mixtures containing graphene nanoplatelets, reaching up to 150%, as compared to VB 6000. Regarding the tribological behavior, the friction coefficient achieved a reduction of up to 20% at room temperature (RT) and 26% at 60 °C for the hybrid containing all three nanoadditives (H3), outperforming the commercial fluid. Moreover, H3 demonstrated the most substantial reductions in wear volume (84%) and surface roughness (60%). The wettability of H3 benefited from the combined mechanisms of the applied nanoadditives; its application the contact angle decreased by 63%, revealing its outstanding spreadability. The results reveal the high potential of the H3 hybrid as a competitive and green metal working fluid that can replace hostile and toxic ones in industrial applications.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":"16 3","pages":"0"},"PeriodicalIF":3.1000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the Performance of Rapeseed Oil Lubricant for Machinery Component Applications through Hybrid Blends of Nanoadditives\",\"authors\":\"Belal G. Nassef, Florian Pape, Gerhard Poll\",\"doi\":\"10.3390/lubricants11110479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bio-lubricants have demonstrated promising tribological and physical properties, suggesting their potential advantages in the lubrication of critical machinery components. This study investigates the impact of using blended individual and hybrid nanoadditives, such as graphene nanoplatelets, ZnO, and an ionic liquid (IL) of Trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl)phosphinate, on the rheological, tribological, and physical characteristics of rapeseed oil. A commercial cutting fluid (BLASER Vasco 6000) (VB 6000) is used for comparison. The results revealed a substantial improvement in viscosity index (VI) values for mixtures containing graphene nanoplatelets, reaching up to 150%, as compared to VB 6000. Regarding the tribological behavior, the friction coefficient achieved a reduction of up to 20% at room temperature (RT) and 26% at 60 °C for the hybrid containing all three nanoadditives (H3), outperforming the commercial fluid. Moreover, H3 demonstrated the most substantial reductions in wear volume (84%) and surface roughness (60%). The wettability of H3 benefited from the combined mechanisms of the applied nanoadditives; its application the contact angle decreased by 63%, revealing its outstanding spreadability. The results reveal the high potential of the H3 hybrid as a competitive and green metal working fluid that can replace hostile and toxic ones in industrial applications.\",\"PeriodicalId\":18135,\"journal\":{\"name\":\"Lubricants\",\"volume\":\"16 3\",\"pages\":\"0\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lubricants\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/lubricants11110479\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/lubricants11110479","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

生物润滑剂已显示出良好的摩擦学和物理性能,表明其在关键机械部件润滑方面的潜在优势。本研究考察了混合纳米添加剂(如石墨烯纳米片、ZnO和三己基十四烷基膦二(2,4,4-三甲基戊基)膦酸盐离子液体(IL))对菜籽油流变学、摩擦学和物理特性的影响。使用商用切削液(BLASER Vasco 6000) (VB 6000)进行比较。结果显示,与VB 6000相比,含有石墨烯纳米片的混合物的粘度指数(VI)值有了实质性的提高,达到150%。在摩擦学性能方面,含有三种纳米添加剂(H3)的混合物在室温(RT)下的摩擦系数降低了20%,在60℃下的摩擦系数降低了26%,优于商用流体。此外,H3在磨损量(84%)和表面粗糙度(60%)方面表现出最显著的降低。H3的润湿性受益于纳米添加剂的联合作用机制;应用后,接触角减小63%,显示出优异的铺展性能。结果表明,H3混合物作为一种具有竞争力的绿色金属加工液具有很高的潜力,可以在工业应用中取代有害和有毒的金属加工液。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing the Performance of Rapeseed Oil Lubricant for Machinery Component Applications through Hybrid Blends of Nanoadditives
Bio-lubricants have demonstrated promising tribological and physical properties, suggesting their potential advantages in the lubrication of critical machinery components. This study investigates the impact of using blended individual and hybrid nanoadditives, such as graphene nanoplatelets, ZnO, and an ionic liquid (IL) of Trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl)phosphinate, on the rheological, tribological, and physical characteristics of rapeseed oil. A commercial cutting fluid (BLASER Vasco 6000) (VB 6000) is used for comparison. The results revealed a substantial improvement in viscosity index (VI) values for mixtures containing graphene nanoplatelets, reaching up to 150%, as compared to VB 6000. Regarding the tribological behavior, the friction coefficient achieved a reduction of up to 20% at room temperature (RT) and 26% at 60 °C for the hybrid containing all three nanoadditives (H3), outperforming the commercial fluid. Moreover, H3 demonstrated the most substantial reductions in wear volume (84%) and surface roughness (60%). The wettability of H3 benefited from the combined mechanisms of the applied nanoadditives; its application the contact angle decreased by 63%, revealing its outstanding spreadability. The results reveal the high potential of the H3 hybrid as a competitive and green metal working fluid that can replace hostile and toxic ones in industrial applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lubricants
Lubricants Engineering-Mechanical Engineering
CiteScore
3.60
自引率
25.70%
发文量
293
审稿时长
11 weeks
期刊介绍: This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding
期刊最新文献
Effect of a Substrate’s Preheating Temperature on the Microstructure and Properties of Ni-Based Alloy Coatings Effect of Operating Parameters on the Mulching Device Wear Behavior of a Ridging and Mulching Machine A Generalised Method for Friction Optimisation of Surface Textured Seals by Machine Learning Influence of 1-Ethyl-3-methylimidazolium Diethylphosphate Ionic Liquid on the Performance of Eu- and Gd-Doped Diamond-like Carbon Coatings The Effect of Slider Configuration on Lubricant Depletion at the Slider/Disk Contact Interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1