混合稀疏同步与异步纵向协变量的变系数模型回归分析

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY Electronic Journal of Statistics Pub Date : 2023-01-01 DOI:10.1214/23-ejs2175
Congmin Liu, Zhuowei Sun, Hongyuan Cao
{"title":"混合稀疏同步与异步纵向协变量的变系数模型回归分析","authors":"Congmin Liu, Zhuowei Sun, Hongyuan Cao","doi":"10.1214/23-ejs2175","DOIUrl":null,"url":null,"abstract":"We consider varying-coefficient models for mixed synchronous and asynchronous longitudinal covariates, where asynchronicity refers to the misalignment of longitudinal measurement times within an individual. We propose three different methods of parameter estimation and inference. The first method is a one-step approach that estimates non-parametric regression functions for synchronous and asynchronous longitudinal covariates simultaneously. The second method is a two-step approach in which synchronous longitudinal covariates are regressed with the longitudinal response by centering the synchronous longitudinal covariates first and, in the second step, the residuals from the first step are regressed with asynchronous longitudinal covariates. The third method is the same as the second method except that in the first step, we omit the asynchronous longitudinal covariate and include a non-parametric intercept in the regression analysis of synchronous longitudinal covariates and the longitudinal response. We further construct simultaneous confidence bands for the non-parametric regression functions to quantify the overall magnitude of variation. Extensive simulation studies provide numerical support for the theoretical findings. The practical utility of the methods is illustrated on a dataset from the ADNI study.","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":"12 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regression analysis of mixed sparse synchronous and asynchronous longitudinal covariates with varying-coefficient models\",\"authors\":\"Congmin Liu, Zhuowei Sun, Hongyuan Cao\",\"doi\":\"10.1214/23-ejs2175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider varying-coefficient models for mixed synchronous and asynchronous longitudinal covariates, where asynchronicity refers to the misalignment of longitudinal measurement times within an individual. We propose three different methods of parameter estimation and inference. The first method is a one-step approach that estimates non-parametric regression functions for synchronous and asynchronous longitudinal covariates simultaneously. The second method is a two-step approach in which synchronous longitudinal covariates are regressed with the longitudinal response by centering the synchronous longitudinal covariates first and, in the second step, the residuals from the first step are regressed with asynchronous longitudinal covariates. The third method is the same as the second method except that in the first step, we omit the asynchronous longitudinal covariate and include a non-parametric intercept in the regression analysis of synchronous longitudinal covariates and the longitudinal response. We further construct simultaneous confidence bands for the non-parametric regression functions to quantify the overall magnitude of variation. Extensive simulation studies provide numerical support for the theoretical findings. The practical utility of the methods is illustrated on a dataset from the ADNI study.\",\"PeriodicalId\":49272,\"journal\":{\"name\":\"Electronic Journal of Statistics\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/23-ejs2175\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/23-ejs2175","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑混合同步和异步纵向协变量的变系数模型,其中异步性是指个体内纵向测量时间的不对准。我们提出了三种不同的参数估计和推理方法。第一种方法是一步法,同时估计同步和异步纵向协变量的非参数回归函数。第二种方法是两步方法,首先以同步纵向协变量为中心,将同步纵向协变量与纵向响应进行回归,第二步,将第一步的残差与异步纵向协变量进行回归。第三种方法与第二种方法相同,只是在第一步中,我们省略了异步纵向协变量,并在同步纵向协变量和纵向响应的回归分析中包含了非参数截距。我们进一步为非参数回归函数构建同步置信带,以量化总体变化幅度。大量的模拟研究为理论发现提供了数值支持。ADNI研究的一个数据集说明了这些方法的实际效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Regression analysis of mixed sparse synchronous and asynchronous longitudinal covariates with varying-coefficient models
We consider varying-coefficient models for mixed synchronous and asynchronous longitudinal covariates, where asynchronicity refers to the misalignment of longitudinal measurement times within an individual. We propose three different methods of parameter estimation and inference. The first method is a one-step approach that estimates non-parametric regression functions for synchronous and asynchronous longitudinal covariates simultaneously. The second method is a two-step approach in which synchronous longitudinal covariates are regressed with the longitudinal response by centering the synchronous longitudinal covariates first and, in the second step, the residuals from the first step are regressed with asynchronous longitudinal covariates. The third method is the same as the second method except that in the first step, we omit the asynchronous longitudinal covariate and include a non-parametric intercept in the regression analysis of synchronous longitudinal covariates and the longitudinal response. We further construct simultaneous confidence bands for the non-parametric regression functions to quantify the overall magnitude of variation. Extensive simulation studies provide numerical support for the theoretical findings. The practical utility of the methods is illustrated on a dataset from the ADNI study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Statistics
Electronic Journal of Statistics STATISTICS & PROBABILITY-
CiteScore
1.80
自引率
9.10%
发文量
100
审稿时长
3 months
期刊介绍: The Electronic Journal of Statistics (EJS) publishes research articles and short notes on theoretical, computational and applied statistics. The journal is open access. Articles are refereed and are held to the same standard as articles in other IMS journals. Articles become publicly available shortly after they are accepted.
期刊最新文献
Direct Bayesian linear regression for distribution-valued covariates. Statistical inference via conditional Bayesian posteriors in high-dimensional linear regression Subnetwork estimation for spatial autoregressive models in large-scale networks Tests for high-dimensional single-index models Variable selection for single-index varying-coefficients models with applications to synergistic G × E interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1