利用基于分数的生成模型从非线性大尺度结构中对宇宙初始条件进行后验抽样

Q1 Earth and Planetary Sciences Monthly Notices of the Royal Astronomical Society: Letters Pub Date : 2023-10-13 DOI:10.1093/mnrasl/slad152
Ronan Legin, Matthew Ho, Pablo Lemos, Laurence Perreault-Levasseur, Shirley Ho, Yashar Hezaveh, Benjamin Wandelt
{"title":"利用基于分数的生成模型从非线性大尺度结构中对宇宙初始条件进行后验抽样","authors":"Ronan Legin, Matthew Ho, Pablo Lemos, Laurence Perreault-Levasseur, Shirley Ho, Yashar Hezaveh, Benjamin Wandelt","doi":"10.1093/mnrasl/slad152","DOIUrl":null,"url":null,"abstract":"Abstract Reconstructing the initial conditions of the universe is a key problem in cosmology. Methods based on simulating the forward evolution of the universe have provided a way to infer initial conditions consistent with present-day observations. However, due to the high complexity of the inference problem, these methods either fail to sample a distribution of possible initial density fields or require significant approximations in the simulation model to be tractable, potentially leading to biased results. In this work, we propose the use of score-based generative models to sample realizations of the early universe given present-day observations. We infer the initial density field of full high-resolution dark matter N-body simulations from the present-day density field and verify the quality of produced samples compared to the ground truth based on summary statistics. The proposed method is capable of providing plausible realizations of the early universe density field from the initial conditions posterior distribution marginalized over cosmological parameters and can sample orders of magnitude faster than current state-of-the-art methods.","PeriodicalId":18951,"journal":{"name":"Monthly Notices of the Royal Astronomical Society: Letters","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Posterior Sampling of the Initial Conditions of the Universe from Non-linear Large Scale Structures using Score-Based Generative Models\",\"authors\":\"Ronan Legin, Matthew Ho, Pablo Lemos, Laurence Perreault-Levasseur, Shirley Ho, Yashar Hezaveh, Benjamin Wandelt\",\"doi\":\"10.1093/mnrasl/slad152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Reconstructing the initial conditions of the universe is a key problem in cosmology. Methods based on simulating the forward evolution of the universe have provided a way to infer initial conditions consistent with present-day observations. However, due to the high complexity of the inference problem, these methods either fail to sample a distribution of possible initial density fields or require significant approximations in the simulation model to be tractable, potentially leading to biased results. In this work, we propose the use of score-based generative models to sample realizations of the early universe given present-day observations. We infer the initial density field of full high-resolution dark matter N-body simulations from the present-day density field and verify the quality of produced samples compared to the ground truth based on summary statistics. The proposed method is capable of providing plausible realizations of the early universe density field from the initial conditions posterior distribution marginalized over cosmological parameters and can sample orders of magnitude faster than current state-of-the-art methods.\",\"PeriodicalId\":18951,\"journal\":{\"name\":\"Monthly Notices of the Royal Astronomical Society: Letters\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monthly Notices of the Royal Astronomical Society: Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/mnrasl/slad152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monthly Notices of the Royal Astronomical Society: Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/mnrasl/slad152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 3

摘要

重构宇宙的初始条件是宇宙学中的一个关键问题。基于模拟宇宙向前演化的方法提供了一种推断与当前观测相一致的初始条件的方法。然而,由于推理问题的高度复杂性,这些方法要么无法对可能的初始密度场分布进行采样,要么需要在模拟模型中进行大量近似才能易于处理,从而可能导致有偏差的结果。在这项工作中,我们建议使用基于分数的生成模型来对早期宇宙的实现进行抽样。我们从目前的密度场推断出全高分辨率暗物质n体模拟的初始密度场,并根据汇总统计验证了生成样本的质量与地面事实的比较。所提出的方法能够从初始条件的后验分布中提供早期宇宙密度场的合理实现,并且可以比目前最先进的方法快几个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Posterior Sampling of the Initial Conditions of the Universe from Non-linear Large Scale Structures using Score-Based Generative Models
Abstract Reconstructing the initial conditions of the universe is a key problem in cosmology. Methods based on simulating the forward evolution of the universe have provided a way to infer initial conditions consistent with present-day observations. However, due to the high complexity of the inference problem, these methods either fail to sample a distribution of possible initial density fields or require significant approximations in the simulation model to be tractable, potentially leading to biased results. In this work, we propose the use of score-based generative models to sample realizations of the early universe given present-day observations. We infer the initial density field of full high-resolution dark matter N-body simulations from the present-day density field and verify the quality of produced samples compared to the ground truth based on summary statistics. The proposed method is capable of providing plausible realizations of the early universe density field from the initial conditions posterior distribution marginalized over cosmological parameters and can sample orders of magnitude faster than current state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Monthly Notices of the Royal Astronomical Society: Letters
Monthly Notices of the Royal Astronomical Society: Letters Earth and Planetary Sciences-Space and Planetary Science
CiteScore
8.80
自引率
0.00%
发文量
136
期刊介绍: For papers that merit urgent publication, MNRAS Letters, the online section of Monthly Notices of the Royal Astronomical Society, publishes short, topical and significant research in all fields of astronomy. Letters should be self-contained and describe the results of an original study whose rapid publication might be expected to have a significant influence on the subsequent development of research in the associated subject area. The 5-page limit must be respected. Authors are required to state their reasons for seeking publication in the form of a Letter when submitting their manuscript.
期刊最新文献
A tight N/O–potential relation in star-forming galaxies Constraining fundamental constants with fast radio bursts: Unveiling the role of energy scale TeV afterglow from GRB 221009A: photohadronic origin? Emirical calibration for helium abundance determinations in active galactic nuclei One-sided Hα excess before the first pericentre passage in galaxy Pairs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1