Michael E. Baldwin, Heather D. Reeves, Andrew A. Rosenow
{"title":"基于机器学习的概率次冰点路面温度临近预报系统评价","authors":"Michael E. Baldwin, Heather D. Reeves, Andrew A. Rosenow","doi":"10.1175/waf-d-23-0137.1","DOIUrl":null,"url":null,"abstract":"Abstract Road surface temperatures are a critical factor in determining driving conditions, especially during winter storms. Road temperature observations across the United States are sparse and located mainly along major highways. A machine learning-based system for nowcasting the probability of sub-freezing road surface temperatures was developed at NSSL to allow for widespread monitoring of road conditions in real-time. In this article, these products were evaluated over two winter seasons. Strengths and weaknesses in the nowcast system were identified by stratifying the evaluation metrics into various subsets. These results show that the current system performed well in general, but significantly underpredicted the probability of sub-freezing roads during frozen precipitation events. Machine learning experiments were performed to attempt to address these issues. Evaluations of these experiments indicate reduction in errors when precipitation phase was included as a predictor and precipitating cases were more substantially represented in the training data for the machine learning system.","PeriodicalId":49369,"journal":{"name":"Weather and Forecasting","volume":"65 5","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of a Probabilistic Subfreezing Road Temperature Nowcast System Based on Machine Learning\",\"authors\":\"Michael E. Baldwin, Heather D. Reeves, Andrew A. Rosenow\",\"doi\":\"10.1175/waf-d-23-0137.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Road surface temperatures are a critical factor in determining driving conditions, especially during winter storms. Road temperature observations across the United States are sparse and located mainly along major highways. A machine learning-based system for nowcasting the probability of sub-freezing road surface temperatures was developed at NSSL to allow for widespread monitoring of road conditions in real-time. In this article, these products were evaluated over two winter seasons. Strengths and weaknesses in the nowcast system were identified by stratifying the evaluation metrics into various subsets. These results show that the current system performed well in general, but significantly underpredicted the probability of sub-freezing roads during frozen precipitation events. Machine learning experiments were performed to attempt to address these issues. Evaluations of these experiments indicate reduction in errors when precipitation phase was included as a predictor and precipitating cases were more substantially represented in the training data for the machine learning system.\",\"PeriodicalId\":49369,\"journal\":{\"name\":\"Weather and Forecasting\",\"volume\":\"65 5\",\"pages\":\"0\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Weather and Forecasting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1175/waf-d-23-0137.1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weather and Forecasting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/waf-d-23-0137.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Evaluation of a Probabilistic Subfreezing Road Temperature Nowcast System Based on Machine Learning
Abstract Road surface temperatures are a critical factor in determining driving conditions, especially during winter storms. Road temperature observations across the United States are sparse and located mainly along major highways. A machine learning-based system for nowcasting the probability of sub-freezing road surface temperatures was developed at NSSL to allow for widespread monitoring of road conditions in real-time. In this article, these products were evaluated over two winter seasons. Strengths and weaknesses in the nowcast system were identified by stratifying the evaluation metrics into various subsets. These results show that the current system performed well in general, but significantly underpredicted the probability of sub-freezing roads during frozen precipitation events. Machine learning experiments were performed to attempt to address these issues. Evaluations of these experiments indicate reduction in errors when precipitation phase was included as a predictor and precipitating cases were more substantially represented in the training data for the machine learning system.
期刊介绍:
Weather and Forecasting (WAF) (ISSN: 0882-8156; eISSN: 1520-0434) publishes research that is relevant to operational forecasting. This includes papers on significant weather events, forecasting techniques, forecast verification, model parameterizations, data assimilation, model ensembles, statistical postprocessing techniques, the transfer of research results to the forecasting community, and the societal use and value of forecasts. The scope of WAF includes research relevant to forecast lead times ranging from short-term “nowcasts” through seasonal time scales out to approximately two years.