Han Xie, Xin Wen, Yuchun Wang, Xuan Huang, Qing Shu, Dandan Wang, Linyu Geng, Ziyi Jin, Wei Shen, Weihong Ge, Yizhun Zhu, Lingyun Sun
{"title":"基因型导向的中国SLE患者羟氯喹给药剂量优化新方法。","authors":"Han Xie, Xin Wen, Yuchun Wang, Xuan Huang, Qing Shu, Dandan Wang, Linyu Geng, Ziyi Jin, Wei Shen, Weihong Ge, Yizhun Zhu, Lingyun Sun","doi":"10.1136/lupus-2023-000997","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The study aims to investigate the impact of gene polymorphisms on blood hydroxychloroquine (HCQ) concentrations in patients with SLE and provide guidelines for individualised care.</p><p><strong>Methods: </strong>489 Chinese patients with SLE taking HCQ for more than 3 months were collected in this study. The blood HCQ, desethylhydroxychloroquine (DHCQ) and desethylchloroquine concentrations were measured. The optimal blood concentration of HCQ was determined by receiver operating characteristic curve analysis. Single nucleotide polymorphisms of metabolic enzymes involved in HCQ metabolism were genotyped and the associations with treatment effects were investigated.</p><p><strong>Results: </strong>The cut-off value of HCQ was 559.67 ng/mL, with sensitivity and specificity values of 0.51 and 0.89, respectively. The TC and CC genotypes of CYP2C8 (rs7910936) were significantly related to the increase in blood HCQ concentrations, and the CYP2C8 (rs10882521) TT genotype was associated with lower blood HCQ concentrations. The DHCQ:HCQ ratio was highest in patients with the GG genotype of the CYP2D6*10 (rs1065852) polymorphism and lowest in those with the AA genotype. Patients with the CYP2C8 (rs7910936) CC genotype were more likely to achieve the optimal blood concentration (p=0.030) in HCQ 200 mg/day group and patients with the CYP2D6*10 (rs1065852) GG genotype were more likely to reach the optimal blood concentration (p=0.049) in 400 mg/day group.</p><p><strong>Conclusions: </strong>Our results suggest that the optimal blood concentration of HCQ measured approximately 12-18 hours after the last dosage may be between 500 and 600 ng/mL in Chinese patients with SLE. The observed variations in HCQ concentrations between individuals can potentially be attributed to genetic polymorphisms in CYP2D6*10 (rs1065852) and CYP2C8 (rs7910936 and rs10882521). Genotypical testing of patients and regular monitoring of blood levels are recommended for optimising HCQ dosage management in Chinese patients with SLE.</p><p><strong>Trial registration number: </strong>ChiCTR2300070628.</p>","PeriodicalId":18126,"journal":{"name":"Lupus Science & Medicine","volume":"10 2","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10668244/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genotype-guided new approach for dose optimisation of hydroxychloroquine administration in Chinese patients with SLE.\",\"authors\":\"Han Xie, Xin Wen, Yuchun Wang, Xuan Huang, Qing Shu, Dandan Wang, Linyu Geng, Ziyi Jin, Wei Shen, Weihong Ge, Yizhun Zhu, Lingyun Sun\",\"doi\":\"10.1136/lupus-2023-000997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>The study aims to investigate the impact of gene polymorphisms on blood hydroxychloroquine (HCQ) concentrations in patients with SLE and provide guidelines for individualised care.</p><p><strong>Methods: </strong>489 Chinese patients with SLE taking HCQ for more than 3 months were collected in this study. The blood HCQ, desethylhydroxychloroquine (DHCQ) and desethylchloroquine concentrations were measured. The optimal blood concentration of HCQ was determined by receiver operating characteristic curve analysis. Single nucleotide polymorphisms of metabolic enzymes involved in HCQ metabolism were genotyped and the associations with treatment effects were investigated.</p><p><strong>Results: </strong>The cut-off value of HCQ was 559.67 ng/mL, with sensitivity and specificity values of 0.51 and 0.89, respectively. The TC and CC genotypes of CYP2C8 (rs7910936) were significantly related to the increase in blood HCQ concentrations, and the CYP2C8 (rs10882521) TT genotype was associated with lower blood HCQ concentrations. The DHCQ:HCQ ratio was highest in patients with the GG genotype of the CYP2D6*10 (rs1065852) polymorphism and lowest in those with the AA genotype. Patients with the CYP2C8 (rs7910936) CC genotype were more likely to achieve the optimal blood concentration (p=0.030) in HCQ 200 mg/day group and patients with the CYP2D6*10 (rs1065852) GG genotype were more likely to reach the optimal blood concentration (p=0.049) in 400 mg/day group.</p><p><strong>Conclusions: </strong>Our results suggest that the optimal blood concentration of HCQ measured approximately 12-18 hours after the last dosage may be between 500 and 600 ng/mL in Chinese patients with SLE. The observed variations in HCQ concentrations between individuals can potentially be attributed to genetic polymorphisms in CYP2D6*10 (rs1065852) and CYP2C8 (rs7910936 and rs10882521). Genotypical testing of patients and regular monitoring of blood levels are recommended for optimising HCQ dosage management in Chinese patients with SLE.</p><p><strong>Trial registration number: </strong>ChiCTR2300070628.</p>\",\"PeriodicalId\":18126,\"journal\":{\"name\":\"Lupus Science & Medicine\",\"volume\":\"10 2\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10668244/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lupus Science & Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1136/lupus-2023-000997\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RHEUMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lupus Science & Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/lupus-2023-000997","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RHEUMATOLOGY","Score":null,"Total":0}
Genotype-guided new approach for dose optimisation of hydroxychloroquine administration in Chinese patients with SLE.
Objectives: The study aims to investigate the impact of gene polymorphisms on blood hydroxychloroquine (HCQ) concentrations in patients with SLE and provide guidelines for individualised care.
Methods: 489 Chinese patients with SLE taking HCQ for more than 3 months were collected in this study. The blood HCQ, desethylhydroxychloroquine (DHCQ) and desethylchloroquine concentrations were measured. The optimal blood concentration of HCQ was determined by receiver operating characteristic curve analysis. Single nucleotide polymorphisms of metabolic enzymes involved in HCQ metabolism were genotyped and the associations with treatment effects were investigated.
Results: The cut-off value of HCQ was 559.67 ng/mL, with sensitivity and specificity values of 0.51 and 0.89, respectively. The TC and CC genotypes of CYP2C8 (rs7910936) were significantly related to the increase in blood HCQ concentrations, and the CYP2C8 (rs10882521) TT genotype was associated with lower blood HCQ concentrations. The DHCQ:HCQ ratio was highest in patients with the GG genotype of the CYP2D6*10 (rs1065852) polymorphism and lowest in those with the AA genotype. Patients with the CYP2C8 (rs7910936) CC genotype were more likely to achieve the optimal blood concentration (p=0.030) in HCQ 200 mg/day group and patients with the CYP2D6*10 (rs1065852) GG genotype were more likely to reach the optimal blood concentration (p=0.049) in 400 mg/day group.
Conclusions: Our results suggest that the optimal blood concentration of HCQ measured approximately 12-18 hours after the last dosage may be between 500 and 600 ng/mL in Chinese patients with SLE. The observed variations in HCQ concentrations between individuals can potentially be attributed to genetic polymorphisms in CYP2D6*10 (rs1065852) and CYP2C8 (rs7910936 and rs10882521). Genotypical testing of patients and regular monitoring of blood levels are recommended for optimising HCQ dosage management in Chinese patients with SLE.
期刊介绍:
Lupus Science & Medicine is a global, peer reviewed, open access online journal that provides a central point for publication of basic, clinical, translational, and epidemiological studies of all aspects of lupus and related diseases. It is the first lupus-specific open access journal in the world and was developed in response to the need for a barrier-free forum for publication of groundbreaking studies in lupus. The journal publishes research on lupus from fields including, but not limited to: rheumatology, dermatology, nephrology, immunology, pediatrics, cardiology, hepatology, pulmonology, obstetrics and gynecology, and psychiatry.