带一级和二级节流孔限制器的新型空气静力轴承的静态和动态性能

IF 3.1 3区 工程技术 Q2 ENGINEERING, MECHANICAL Lubricants Pub Date : 2023-12-08 DOI:10.3390/lubricants11120518
Puliang Yu, Te Zuo, Jiong Lu, Min Zhong, Liping Zhang
{"title":"带一级和二级节流孔限制器的新型空气静力轴承的静态和动态性能","authors":"Puliang Yu, Te Zuo, Jiong Lu, Min Zhong, Liping Zhang","doi":"10.3390/lubricants11120518","DOIUrl":null,"url":null,"abstract":"Aerostatic bearings are crucial support components in ultra−precision manufacturing equipment. However, improvements in the load−carrying capability (LCC) of aerostatic bearings often lead to higher intensity nano−vibrations. This paper introduces a novel primary and secondary orifice restrictor (PSOR) designed to simultaneously enhance the LCC and mitigate nano−vibrations in aerostatic bearings. The static performance of complex turbulent flows occurring within the chamber of aerostatic bearings with PSORs was investigated. The dynamic performance of the turbulent flows was analyzed through 3D transient numerical simulation using the large eddy simulation method. The LCC and nano−vibration acceleration were measured experimentally, and the results indicated that the design of the secondary orifice diameter could enhance LCC and mitigate nano−vibrations, consistent with theoretical predictions. The accuracy of the proposed model was validated, confirming the effectiveness of PSOR. In the experiments, an aerostatic bearing with a secondary orifice diameter of 0.1 mm exhibited the lowest LCC and largest nano−vibration. Conversely, an aerostatic bearing with a secondary orifice diameter of 0.26 mm exhibited the highest LCC and weakest nano−vibration. This study provides insights into the formation mechanism of turbulent vortex and interaction mechanism among the primary orifice and secondary orifices in aerostatic bearings with a PSOR.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":"43 50","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Static and Dynamic Performances of Novel Aerostatic Bearings with Primary and Secondary Orifice Restrictors\",\"authors\":\"Puliang Yu, Te Zuo, Jiong Lu, Min Zhong, Liping Zhang\",\"doi\":\"10.3390/lubricants11120518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aerostatic bearings are crucial support components in ultra−precision manufacturing equipment. However, improvements in the load−carrying capability (LCC) of aerostatic bearings often lead to higher intensity nano−vibrations. This paper introduces a novel primary and secondary orifice restrictor (PSOR) designed to simultaneously enhance the LCC and mitigate nano−vibrations in aerostatic bearings. The static performance of complex turbulent flows occurring within the chamber of aerostatic bearings with PSORs was investigated. The dynamic performance of the turbulent flows was analyzed through 3D transient numerical simulation using the large eddy simulation method. The LCC and nano−vibration acceleration were measured experimentally, and the results indicated that the design of the secondary orifice diameter could enhance LCC and mitigate nano−vibrations, consistent with theoretical predictions. The accuracy of the proposed model was validated, confirming the effectiveness of PSOR. In the experiments, an aerostatic bearing with a secondary orifice diameter of 0.1 mm exhibited the lowest LCC and largest nano−vibration. Conversely, an aerostatic bearing with a secondary orifice diameter of 0.26 mm exhibited the highest LCC and weakest nano−vibration. This study provides insights into the formation mechanism of turbulent vortex and interaction mechanism among the primary orifice and secondary orifices in aerostatic bearings with a PSOR.\",\"PeriodicalId\":18135,\"journal\":{\"name\":\"Lubricants\",\"volume\":\"43 50\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lubricants\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/lubricants11120518\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/lubricants11120518","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

空气静压轴承是超精密制造设备的关键支撑部件。然而,空气静压轴承承载能力(LCC)的提高往往会导致更高强度的纳米振动。本文介绍了一种新型的初级和次级节流器(PSOR),旨在同时提高LCC和减轻空气静压轴承的纳米振动。研究了带psor的静压轴承腔内复杂湍流的静态性能。采用大涡模拟方法进行三维瞬态数值模拟,分析了紊流的动态特性。实验测量了LCC和纳米振动加速度,结果表明,二次孔直径的设计可以提高LCC和减轻纳米振动,这与理论预测一致。验证了所提模型的准确性,证实了PSOR的有效性。在实验中,副孔直径为0.1 mm的静压轴承的LCC最低,纳米振动最大。相反,副孔直径为0.26 mm的静压轴承的LCC最高,纳米振动最弱。本研究对带PSOR的静压轴承湍流涡的形成机理以及主孔与副孔之间的相互作用机理进行了深入的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Static and Dynamic Performances of Novel Aerostatic Bearings with Primary and Secondary Orifice Restrictors
Aerostatic bearings are crucial support components in ultra−precision manufacturing equipment. However, improvements in the load−carrying capability (LCC) of aerostatic bearings often lead to higher intensity nano−vibrations. This paper introduces a novel primary and secondary orifice restrictor (PSOR) designed to simultaneously enhance the LCC and mitigate nano−vibrations in aerostatic bearings. The static performance of complex turbulent flows occurring within the chamber of aerostatic bearings with PSORs was investigated. The dynamic performance of the turbulent flows was analyzed through 3D transient numerical simulation using the large eddy simulation method. The LCC and nano−vibration acceleration were measured experimentally, and the results indicated that the design of the secondary orifice diameter could enhance LCC and mitigate nano−vibrations, consistent with theoretical predictions. The accuracy of the proposed model was validated, confirming the effectiveness of PSOR. In the experiments, an aerostatic bearing with a secondary orifice diameter of 0.1 mm exhibited the lowest LCC and largest nano−vibration. Conversely, an aerostatic bearing with a secondary orifice diameter of 0.26 mm exhibited the highest LCC and weakest nano−vibration. This study provides insights into the formation mechanism of turbulent vortex and interaction mechanism among the primary orifice and secondary orifices in aerostatic bearings with a PSOR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lubricants
Lubricants Engineering-Mechanical Engineering
CiteScore
3.60
自引率
25.70%
发文量
293
审稿时长
11 weeks
期刊介绍: This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding
期刊最新文献
Effect of a Substrate’s Preheating Temperature on the Microstructure and Properties of Ni-Based Alloy Coatings Effect of Operating Parameters on the Mulching Device Wear Behavior of a Ridging and Mulching Machine A Generalised Method for Friction Optimisation of Surface Textured Seals by Machine Learning Influence of 1-Ethyl-3-methylimidazolium Diethylphosphate Ionic Liquid on the Performance of Eu- and Gd-Doped Diamond-like Carbon Coatings The Effect of Slider Configuration on Lubricant Depletion at the Slider/Disk Contact Interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1