{"title":"NRIP1 可调节肺腺癌细胞的增殖。","authors":"Fumihiko Watanabe, Shigemitsu Sato, Takuo Hirose, Moe Endo, Akari Endo, Hiroki Ito, Koji Ohba, Takefumi Mori, Kazuhiro Takahashi","doi":"10.1093/jb/mvad107","DOIUrl":null,"url":null,"abstract":"<p><p>Nuclear receptor interacting protein 1 (NRIP1) is a transcription cofactor that regulates the activity of nuclear receptors and transcription factors. Functional expression of NRIP1 has been identified in multiple cancers. However, the expression and function of NRIP1 in lung adenocarcinoma have remained unclear. Thus, we aimed to clarify the NRIP1 expression and its functions in lung adenocarcinoma cells. NRIP1 and Ki-67 were immunostained in the tissue microarray section consisting of 64 lung adenocarcinoma cases, and the association of NRIP1 immunoreactivity with clinical phenotypes was examined. Survival analysis was performed in lung adenocarcinoma data from The Cancer Genome Atlas (TCGA). Human A549 lung adenocarcinoma cell line with an NRIP1-silencing technique was used in vitro study. Forty-three of 64 cases were immunostained with NRIP1. Ki-67-positive cases were more frequent in NRIP1-positive cases as opposed to NRIP1-negative cases. Higher NRIP1 mRNA expression was associated with poor prognosis in the TCGA lung adenocarcinoma data. NRIP1 was mainly located in the nucleus of A549 cells. NRIP1 silencing significantly reduced the number of living cells, suppressed cell proliferation, and induced apoptosis. These results suggest that NRIP1 participates in the progression and development of lung adenocarcinoma. Targeting NRIP1 may be a possible therapeutic strategy against lung adenocarcinoma.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":"323-333"},"PeriodicalIF":2.1000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NRIP1 regulates cell proliferation in lung adenocarcinoma cells.\",\"authors\":\"Fumihiko Watanabe, Shigemitsu Sato, Takuo Hirose, Moe Endo, Akari Endo, Hiroki Ito, Koji Ohba, Takefumi Mori, Kazuhiro Takahashi\",\"doi\":\"10.1093/jb/mvad107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nuclear receptor interacting protein 1 (NRIP1) is a transcription cofactor that regulates the activity of nuclear receptors and transcription factors. Functional expression of NRIP1 has been identified in multiple cancers. However, the expression and function of NRIP1 in lung adenocarcinoma have remained unclear. Thus, we aimed to clarify the NRIP1 expression and its functions in lung adenocarcinoma cells. NRIP1 and Ki-67 were immunostained in the tissue microarray section consisting of 64 lung adenocarcinoma cases, and the association of NRIP1 immunoreactivity with clinical phenotypes was examined. Survival analysis was performed in lung adenocarcinoma data from The Cancer Genome Atlas (TCGA). Human A549 lung adenocarcinoma cell line with an NRIP1-silencing technique was used in vitro study. Forty-three of 64 cases were immunostained with NRIP1. Ki-67-positive cases were more frequent in NRIP1-positive cases as opposed to NRIP1-negative cases. Higher NRIP1 mRNA expression was associated with poor prognosis in the TCGA lung adenocarcinoma data. NRIP1 was mainly located in the nucleus of A549 cells. NRIP1 silencing significantly reduced the number of living cells, suppressed cell proliferation, and induced apoptosis. These results suggest that NRIP1 participates in the progression and development of lung adenocarcinoma. Targeting NRIP1 may be a possible therapeutic strategy against lung adenocarcinoma.</p>\",\"PeriodicalId\":15234,\"journal\":{\"name\":\"Journal of biochemistry\",\"volume\":\" \",\"pages\":\"323-333\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jb/mvad107\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jb/mvad107","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
NRIP1 regulates cell proliferation in lung adenocarcinoma cells.
Nuclear receptor interacting protein 1 (NRIP1) is a transcription cofactor that regulates the activity of nuclear receptors and transcription factors. Functional expression of NRIP1 has been identified in multiple cancers. However, the expression and function of NRIP1 in lung adenocarcinoma have remained unclear. Thus, we aimed to clarify the NRIP1 expression and its functions in lung adenocarcinoma cells. NRIP1 and Ki-67 were immunostained in the tissue microarray section consisting of 64 lung adenocarcinoma cases, and the association of NRIP1 immunoreactivity with clinical phenotypes was examined. Survival analysis was performed in lung adenocarcinoma data from The Cancer Genome Atlas (TCGA). Human A549 lung adenocarcinoma cell line with an NRIP1-silencing technique was used in vitro study. Forty-three of 64 cases were immunostained with NRIP1. Ki-67-positive cases were more frequent in NRIP1-positive cases as opposed to NRIP1-negative cases. Higher NRIP1 mRNA expression was associated with poor prognosis in the TCGA lung adenocarcinoma data. NRIP1 was mainly located in the nucleus of A549 cells. NRIP1 silencing significantly reduced the number of living cells, suppressed cell proliferation, and induced apoptosis. These results suggest that NRIP1 participates in the progression and development of lung adenocarcinoma. Targeting NRIP1 may be a possible therapeutic strategy against lung adenocarcinoma.
期刊介绍:
The Journal of Biochemistry founded in 1922 publishes the results of original research in the fields of Biochemistry, Molecular Biology, Cell, and Biotechnology written in English in the form of Regular Papers or Rapid Communications. A Rapid Communication is not a preliminary note, but it is, though brief, a complete and final publication. The materials described in Rapid Communications should not be included in a later paper. The Journal also publishes short reviews (JB Review) and papers solicited by the Editorial Board.