{"title":"离子受体介导果蝇的嗅觉学习和记忆","authors":"Md Zeeshan Ali, Anushree, Aarif Ahsan, Mohammad Shamsul Ola, Rizwanul Haque, Jawaid Ahsan","doi":"10.1111/1744-7917.13308","DOIUrl":null,"url":null,"abstract":"<p><p>Phenylacetaldehyde (PAH), an aromatic compound, is present in a diverse range of fruits including overripe bananas and prickly pear cactus, the two major host fruits for Drosophila melanogaster. PAH acts as a potent ligand for the ionotropic receptor 84a (IR84a) in the adult fruit fly and it is detected by the IR84a/IR8a heterotetrameric complex. Its role in the male courtship behavior through IR84a as an environmental aphrodisiac is of additional importance. In D. melanogaster, two distinct kinds of olfactory receptors, that is, odorant receptors (ORs) and ionotropic receptors (IRs), perceive the odorant stimuli. They display unique structural, molecular, and functional characteristics in addition to having different evolutionary origins. Traditionally, olfactory cues detected by the ORs such as ethyl acetate, 1-butanol, isoamyl acetate, 1-octanol, 4-methylcyclohexanol, etc. classified as aliphatic esters and alcohols have been employed in olfactory classical conditioning using fruit flies. This underlines the participation of OR-activated olfactory pathways in learning and memory formation. Our study elucidates that likewise ethyl acetate (EA) (an OR-responsive odorant), PAH (an IR-responsive aromatic compound) too can form learning and memory when associated with an appetitive gustatory reinforcer. The association of PAH with sucrose (PAH/SUC) led to learning and formation of the long-term memory (LTM). Additionally, the Orco<sup>1</sup>, Ir84a<sup>MI00501</sup>, and Ir8a<sup>1</sup> mutant flies were used to confirm the exclusive participation of the IR84a/IR8a complex in PAH/SUC olfactory associative conditioning. These results highlight the involvement of IRs via an IR-activated pathway in facilitating robust olfactory behavior.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":"1249-1269"},"PeriodicalIF":2.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ionotropic receptors mediate olfactory learning and memory in Drosophila.\",\"authors\":\"Md Zeeshan Ali, Anushree, Aarif Ahsan, Mohammad Shamsul Ola, Rizwanul Haque, Jawaid Ahsan\",\"doi\":\"10.1111/1744-7917.13308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Phenylacetaldehyde (PAH), an aromatic compound, is present in a diverse range of fruits including overripe bananas and prickly pear cactus, the two major host fruits for Drosophila melanogaster. PAH acts as a potent ligand for the ionotropic receptor 84a (IR84a) in the adult fruit fly and it is detected by the IR84a/IR8a heterotetrameric complex. Its role in the male courtship behavior through IR84a as an environmental aphrodisiac is of additional importance. In D. melanogaster, two distinct kinds of olfactory receptors, that is, odorant receptors (ORs) and ionotropic receptors (IRs), perceive the odorant stimuli. They display unique structural, molecular, and functional characteristics in addition to having different evolutionary origins. Traditionally, olfactory cues detected by the ORs such as ethyl acetate, 1-butanol, isoamyl acetate, 1-octanol, 4-methylcyclohexanol, etc. classified as aliphatic esters and alcohols have been employed in olfactory classical conditioning using fruit flies. This underlines the participation of OR-activated olfactory pathways in learning and memory formation. Our study elucidates that likewise ethyl acetate (EA) (an OR-responsive odorant), PAH (an IR-responsive aromatic compound) too can form learning and memory when associated with an appetitive gustatory reinforcer. The association of PAH with sucrose (PAH/SUC) led to learning and formation of the long-term memory (LTM). Additionally, the Orco<sup>1</sup>, Ir84a<sup>MI00501</sup>, and Ir8a<sup>1</sup> mutant flies were used to confirm the exclusive participation of the IR84a/IR8a complex in PAH/SUC olfactory associative conditioning. These results highlight the involvement of IRs via an IR-activated pathway in facilitating robust olfactory behavior.</p>\",\"PeriodicalId\":13618,\"journal\":{\"name\":\"Insect Science\",\"volume\":\" \",\"pages\":\"1249-1269\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insect Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/1744-7917.13308\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/1744-7917.13308","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Ionotropic receptors mediate olfactory learning and memory in Drosophila.
Phenylacetaldehyde (PAH), an aromatic compound, is present in a diverse range of fruits including overripe bananas and prickly pear cactus, the two major host fruits for Drosophila melanogaster. PAH acts as a potent ligand for the ionotropic receptor 84a (IR84a) in the adult fruit fly and it is detected by the IR84a/IR8a heterotetrameric complex. Its role in the male courtship behavior through IR84a as an environmental aphrodisiac is of additional importance. In D. melanogaster, two distinct kinds of olfactory receptors, that is, odorant receptors (ORs) and ionotropic receptors (IRs), perceive the odorant stimuli. They display unique structural, molecular, and functional characteristics in addition to having different evolutionary origins. Traditionally, olfactory cues detected by the ORs such as ethyl acetate, 1-butanol, isoamyl acetate, 1-octanol, 4-methylcyclohexanol, etc. classified as aliphatic esters and alcohols have been employed in olfactory classical conditioning using fruit flies. This underlines the participation of OR-activated olfactory pathways in learning and memory formation. Our study elucidates that likewise ethyl acetate (EA) (an OR-responsive odorant), PAH (an IR-responsive aromatic compound) too can form learning and memory when associated with an appetitive gustatory reinforcer. The association of PAH with sucrose (PAH/SUC) led to learning and formation of the long-term memory (LTM). Additionally, the Orco1, Ir84aMI00501, and Ir8a1 mutant flies were used to confirm the exclusive participation of the IR84a/IR8a complex in PAH/SUC olfactory associative conditioning. These results highlight the involvement of IRs via an IR-activated pathway in facilitating robust olfactory behavior.
期刊介绍:
Insect Science is an English-language journal, which publishes original research articles dealing with all fields of research in into insects and other terrestrial arthropods. Papers in any of the following fields will be considered: ecology, behavior, biogeography, physiology, biochemistry, sociobiology, phylogeny, pest management, and exotic incursions. The emphasis of the journal is on the adaptation and evolutionary biology of insects from the molecular to the ecosystem level. Reviews, mini reviews and letters to the editor, book reviews, and information about academic activities of the society are also published.