{"title":"振动感受器突触后神经元频率选择性的线性化建模框架","authors":"Tian Gao, Bin Deng, Jiang Wang, Guosheng Yi","doi":"10.1007/s11571-024-10070-8","DOIUrl":null,"url":null,"abstract":"<p>Vibration is an indispensable part of the tactile perception, which is encoded to oscillatory synaptic currents by receptors and transferred to neurons in the brain. The A2 and B1 neurons in the drosophila brain postsynaptic to the vibration receptors exhibit selective preferences for oscillatory synaptic currents with different frequencies, which is caused by the specific voltage-gated Na<sup>+</sup> and K<sup>+</sup> currents that both oppose the variations in membrane potential. To understand the peculiar role of the Na<sup>+</sup> and K<sup>+</sup> currents in shaping the filtering property of A2 and B1 neurons, we develop a linearized modeling framework that allows to systematically change the activation properties of these ionic channels. A data-driven conductance-based biophysical model is used to reproduce the frequency filtering of oscillatory synaptic inputs. Then, this data-driven model is linearized at the resting potential and its frequency response is calculated based on the transfer function, which is described by the magnitude–frequency curve. When we regulate the activation properties of the Na<sup>+</sup> and K<sup>+</sup> channels by changing the biophysical parameters, the dominant pole of the transfer function is found to be highly correlated with the fluctuation of the active current, which represents the strength of suppression of slow voltage variation. Meanwhile, the dominant pole also shapes the magnitude–frequency curve and further qualitatively determines the filtering property of the model. The transfer function provides a parsimonious description of how the biophysical parameters in Na<sup>+</sup> and K<sup>+</sup> channels change the inhibition of slow variations in membrane potential by Na<sup>+</sup> and K<sup>+</sup> currents, and further illustrates the relationship between the filtering properties and the activation properties of Na<sup>+</sup> and K<sup>+</sup> channels. This computational framework with the data-driven conductance-based biophysical model and its linearized model contributes to understanding the transmission and filtering of vibration stimulus in the tactile system.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"21 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A linearized modeling framework for the frequency selectivity in neurons postsynaptic to vibration receptors\",\"authors\":\"Tian Gao, Bin Deng, Jiang Wang, Guosheng Yi\",\"doi\":\"10.1007/s11571-024-10070-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Vibration is an indispensable part of the tactile perception, which is encoded to oscillatory synaptic currents by receptors and transferred to neurons in the brain. The A2 and B1 neurons in the drosophila brain postsynaptic to the vibration receptors exhibit selective preferences for oscillatory synaptic currents with different frequencies, which is caused by the specific voltage-gated Na<sup>+</sup> and K<sup>+</sup> currents that both oppose the variations in membrane potential. To understand the peculiar role of the Na<sup>+</sup> and K<sup>+</sup> currents in shaping the filtering property of A2 and B1 neurons, we develop a linearized modeling framework that allows to systematically change the activation properties of these ionic channels. A data-driven conductance-based biophysical model is used to reproduce the frequency filtering of oscillatory synaptic inputs. Then, this data-driven model is linearized at the resting potential and its frequency response is calculated based on the transfer function, which is described by the magnitude–frequency curve. When we regulate the activation properties of the Na<sup>+</sup> and K<sup>+</sup> channels by changing the biophysical parameters, the dominant pole of the transfer function is found to be highly correlated with the fluctuation of the active current, which represents the strength of suppression of slow voltage variation. Meanwhile, the dominant pole also shapes the magnitude–frequency curve and further qualitatively determines the filtering property of the model. The transfer function provides a parsimonious description of how the biophysical parameters in Na<sup>+</sup> and K<sup>+</sup> channels change the inhibition of slow variations in membrane potential by Na<sup>+</sup> and K<sup>+</sup> currents, and further illustrates the relationship between the filtering properties and the activation properties of Na<sup>+</sup> and K<sup>+</sup> channels. This computational framework with the data-driven conductance-based biophysical model and its linearized model contributes to understanding the transmission and filtering of vibration stimulus in the tactile system.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-024-10070-8\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-024-10070-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
A linearized modeling framework for the frequency selectivity in neurons postsynaptic to vibration receptors
Vibration is an indispensable part of the tactile perception, which is encoded to oscillatory synaptic currents by receptors and transferred to neurons in the brain. The A2 and B1 neurons in the drosophila brain postsynaptic to the vibration receptors exhibit selective preferences for oscillatory synaptic currents with different frequencies, which is caused by the specific voltage-gated Na+ and K+ currents that both oppose the variations in membrane potential. To understand the peculiar role of the Na+ and K+ currents in shaping the filtering property of A2 and B1 neurons, we develop a linearized modeling framework that allows to systematically change the activation properties of these ionic channels. A data-driven conductance-based biophysical model is used to reproduce the frequency filtering of oscillatory synaptic inputs. Then, this data-driven model is linearized at the resting potential and its frequency response is calculated based on the transfer function, which is described by the magnitude–frequency curve. When we regulate the activation properties of the Na+ and K+ channels by changing the biophysical parameters, the dominant pole of the transfer function is found to be highly correlated with the fluctuation of the active current, which represents the strength of suppression of slow voltage variation. Meanwhile, the dominant pole also shapes the magnitude–frequency curve and further qualitatively determines the filtering property of the model. The transfer function provides a parsimonious description of how the biophysical parameters in Na+ and K+ channels change the inhibition of slow variations in membrane potential by Na+ and K+ currents, and further illustrates the relationship between the filtering properties and the activation properties of Na+ and K+ channels. This computational framework with the data-driven conductance-based biophysical model and its linearized model contributes to understanding the transmission and filtering of vibration stimulus in the tactile system.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.