基于双代理 DDPG 方法的运动规划框架,适用于由人类关节角度约束引导的双臂机器人

IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Frontiers in Neurorobotics Pub Date : 2024-02-05 DOI:10.3389/fnbot.2024.1362359
Keyao Liang, Fusheng Zha, Wei Guo, Shengkai Liu, Pengfei Wang, Lining Sun
{"title":"基于双代理 DDPG 方法的运动规划框架,适用于由人类关节角度约束引导的双臂机器人","authors":"Keyao Liang, Fusheng Zha, Wei Guo, Shengkai Liu, Pengfei Wang, Lining Sun","doi":"10.3389/fnbot.2024.1362359","DOIUrl":null,"url":null,"abstract":"<sec><title>Introduction</title><p>Reinforcement learning has been widely used in robot motion planning. However, for multi-step complex tasks of dual-arm robots, the trajectory planning method based on reinforcement learning still has some problems, such as ample exploration space, long training time, and uncontrollable training process. Based on the dual-agent depth deterministic strategy gradient (DADDPG) algorithm, this study proposes a motion planning framework constrained by the human joint angle, simultaneously realizing the humanization of learning content and learning style. It quickly plans the coordinated trajectory of dual-arm for complex multi-step tasks.</p></sec><sec><title>Methods</title><p>The proposed framework mainly includes two parts: one is the modeling of human joint angle constraints. The joint angle is calculated from the human arm motion data measured by the inertial measurement unit (IMU) by establishing a human-robot dual-arm kinematic mapping model. Then, the joint angle range constraints are extracted from multiple groups of demonstration data and expressed as inequalities. Second, the segmented reward function is designed. The human joint angle constraint guides the exploratory learning process of the reinforcement learning method in the form of step reward. Therefore, the exploration space is reduced, the training speed is accelerated, and the learning process is controllable to a certain extent.</p></sec><sec><title>Results and discussion</title><p>The effectiveness of the framework was verified in the gym simulation environment of the Baxter robot's reach-grasp-align task. The results show that in this framework, human experience knowledge has a significant impact on the guidance of learning, and this method can more quickly plan the coordinated trajectory of dual-arm for multi-step tasks.</p></sec>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"54 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Motion planning framework based on dual-agent DDPG method for dual-arm robots guided by human joint angle constraints\",\"authors\":\"Keyao Liang, Fusheng Zha, Wei Guo, Shengkai Liu, Pengfei Wang, Lining Sun\",\"doi\":\"10.3389/fnbot.2024.1362359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<sec><title>Introduction</title><p>Reinforcement learning has been widely used in robot motion planning. However, for multi-step complex tasks of dual-arm robots, the trajectory planning method based on reinforcement learning still has some problems, such as ample exploration space, long training time, and uncontrollable training process. Based on the dual-agent depth deterministic strategy gradient (DADDPG) algorithm, this study proposes a motion planning framework constrained by the human joint angle, simultaneously realizing the humanization of learning content and learning style. It quickly plans the coordinated trajectory of dual-arm for complex multi-step tasks.</p></sec><sec><title>Methods</title><p>The proposed framework mainly includes two parts: one is the modeling of human joint angle constraints. The joint angle is calculated from the human arm motion data measured by the inertial measurement unit (IMU) by establishing a human-robot dual-arm kinematic mapping model. Then, the joint angle range constraints are extracted from multiple groups of demonstration data and expressed as inequalities. Second, the segmented reward function is designed. The human joint angle constraint guides the exploratory learning process of the reinforcement learning method in the form of step reward. Therefore, the exploration space is reduced, the training speed is accelerated, and the learning process is controllable to a certain extent.</p></sec><sec><title>Results and discussion</title><p>The effectiveness of the framework was verified in the gym simulation environment of the Baxter robot's reach-grasp-align task. The results show that in this framework, human experience knowledge has a significant impact on the guidance of learning, and this method can more quickly plan the coordinated trajectory of dual-arm for multi-step tasks.</p></sec>\",\"PeriodicalId\":12628,\"journal\":{\"name\":\"Frontiers in Neurorobotics\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Neurorobotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3389/fnbot.2024.1362359\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2024.1362359","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

引言 强化学习在机器人运动规划中得到了广泛应用。然而,对于双臂机器人的多步复杂任务,基于强化学习的轨迹规划方法仍存在探索空间大、训练时间长、训练过程不可控等问题。本研究基于双代理深度确定性策略梯度(DADDPG)算法,提出了一种以人的关节角度为约束的运动规划框架,同时实现了学习内容和学习方式的人性化。方法所提出的框架主要包括两部分:一是人体关节角度约束建模。通过建立人机双臂运动学映射模型,根据惯性测量单元(IMU)测量的人体手臂运动数据计算关节角度。然后,从多组演示数据中提取关节角度范围约束,并表示为不等式。其次,设计分段奖励函数。人体关节角度约束以阶跃奖励的形式引导强化学习方法的探索学习过程。结果与讨论在 Baxter 机器人伸手抓握对齐任务的健身房仿真环境中验证了该框架的有效性。结果表明,在该框架中,人类的经验知识对学习的指导作用非常明显,该方法可以更快地规划多步任务的双臂协调轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Motion planning framework based on dual-agent DDPG method for dual-arm robots guided by human joint angle constraints
Introduction

Reinforcement learning has been widely used in robot motion planning. However, for multi-step complex tasks of dual-arm robots, the trajectory planning method based on reinforcement learning still has some problems, such as ample exploration space, long training time, and uncontrollable training process. Based on the dual-agent depth deterministic strategy gradient (DADDPG) algorithm, this study proposes a motion planning framework constrained by the human joint angle, simultaneously realizing the humanization of learning content and learning style. It quickly plans the coordinated trajectory of dual-arm for complex multi-step tasks.

Methods

The proposed framework mainly includes two parts: one is the modeling of human joint angle constraints. The joint angle is calculated from the human arm motion data measured by the inertial measurement unit (IMU) by establishing a human-robot dual-arm kinematic mapping model. Then, the joint angle range constraints are extracted from multiple groups of demonstration data and expressed as inequalities. Second, the segmented reward function is designed. The human joint angle constraint guides the exploratory learning process of the reinforcement learning method in the form of step reward. Therefore, the exploration space is reduced, the training speed is accelerated, and the learning process is controllable to a certain extent.

Results and discussion

The effectiveness of the framework was verified in the gym simulation environment of the Baxter robot's reach-grasp-align task. The results show that in this framework, human experience knowledge has a significant impact on the guidance of learning, and this method can more quickly plan the coordinated trajectory of dual-arm for multi-step tasks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Neurorobotics
Frontiers in Neurorobotics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCER-ROBOTICS
CiteScore
5.20
自引率
6.50%
发文量
250
审稿时长
14 weeks
期刊介绍: Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide. Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.
期刊最新文献
Real-time fault detection for IIoT facilities using GA-Att-LSTM based on edge-cloud collaboration. Vahagn: VisuAl Haptic Attention Gate Net for slip detection. A multimodal educational robots driven via dynamic attention. LS-VIT: Vision Transformer for action recognition based on long and short-term temporal difference. Neuro-motor controlled wearable augmentations: current research and emerging trends.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1