DL4SC:基于深度学习的新型智能合约漏洞检测框架

IF 2 2区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Automated Software Engineering Pub Date : 2024-03-01 DOI:10.1007/s10515-024-00418-z
Yang Liu, Chao Wang, Yan Ma
{"title":"DL4SC:基于深度学习的新型智能合约漏洞检测框架","authors":"Yang Liu,&nbsp;Chao Wang,&nbsp;Yan Ma","doi":"10.1007/s10515-024-00418-z","DOIUrl":null,"url":null,"abstract":"<div><p>Smart contract is a new paradigm for the decentralized software system, which plays an important and key role in Blockchain-based application. The vulnerabilities in smart contracts are unacceptable, and some of which have caused significant economic losses. The machine learning, especially deep learning, is a very promising and potential approach to vulnerability detecting for smart contracts. At present, deep learning-based vulnerability detection methods have low accuracy, time-consuming, and too small application range. For dealing with these, we propose a novel deep learning-based vulnerability detection framework for smart contracts at opcode level, named as DL4SC. It orthogonally combines the Transformer encoder and CNN (convolutional neural networks) to detect vulnerabilities of smart contracts for the first time, and firstly exploit SSA (sparrow search algorithm) to automatically search model hyperparameters for vulnerability detection. We implement the framework DL4SC on deep learning platform Pytorch with Python, and compare it with existing works on the three public datasets and one dataset we collect. The experiment results show that DL4SC can accurately detect vulnerabilities of smart contracts, and performs better than state-of-the-art works for detecting vulnerabilities in smart contracts. The accuracy and F1-score of DL4SC are 95.29% and 95.68%, respectively.</p></div>","PeriodicalId":55414,"journal":{"name":"Automated Software Engineering","volume":"31 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DL4SC: a novel deep learning-based vulnerability detection framework for smart contracts\",\"authors\":\"Yang Liu,&nbsp;Chao Wang,&nbsp;Yan Ma\",\"doi\":\"10.1007/s10515-024-00418-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Smart contract is a new paradigm for the decentralized software system, which plays an important and key role in Blockchain-based application. The vulnerabilities in smart contracts are unacceptable, and some of which have caused significant economic losses. The machine learning, especially deep learning, is a very promising and potential approach to vulnerability detecting for smart contracts. At present, deep learning-based vulnerability detection methods have low accuracy, time-consuming, and too small application range. For dealing with these, we propose a novel deep learning-based vulnerability detection framework for smart contracts at opcode level, named as DL4SC. It orthogonally combines the Transformer encoder and CNN (convolutional neural networks) to detect vulnerabilities of smart contracts for the first time, and firstly exploit SSA (sparrow search algorithm) to automatically search model hyperparameters for vulnerability detection. We implement the framework DL4SC on deep learning platform Pytorch with Python, and compare it with existing works on the three public datasets and one dataset we collect. The experiment results show that DL4SC can accurately detect vulnerabilities of smart contracts, and performs better than state-of-the-art works for detecting vulnerabilities in smart contracts. The accuracy and F1-score of DL4SC are 95.29% and 95.68%, respectively.</p></div>\",\"PeriodicalId\":55414,\"journal\":{\"name\":\"Automated Software Engineering\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automated Software Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10515-024-00418-z\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automated Software Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10515-024-00418-z","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

智能合约是去中心化软件系统的一种新范式,在基于区块链的应用中发挥着重要而关键的作用。智能合约中的漏洞是不可接受的,其中一些漏洞已经造成了重大经济损失。机器学习,尤其是深度学习,是一种非常有前景和潜力的智能合约漏洞检测方法。目前,基于深度学习的漏洞检测方法存在准确率低、耗时长、应用范围太小等问题。针对这些问题,我们提出了一种新颖的基于深度学习的智能合约操作码级漏洞检测框架,命名为 DL4SC。它首次将 Transformer 编码器和 CNN(卷积神经网络)正交结合起来检测智能合约的漏洞,并首次利用 SSA(麻雀搜索算法)自动搜索模型超参数进行漏洞检测。我们在深度学习平台 Pytorch 上用 Python 实现了框架 DL4SC,并在三个公开数据集和我们收集的一个数据集上与现有作品进行了比较。实验结果表明,DL4SC 可以准确检测智能合约的漏洞,在检测智能合约漏洞方面的表现优于最先进的作品。DL4SC 的准确率和 F1 分数分别为 95.29% 和 95.68%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DL4SC: a novel deep learning-based vulnerability detection framework for smart contracts

Smart contract is a new paradigm for the decentralized software system, which plays an important and key role in Blockchain-based application. The vulnerabilities in smart contracts are unacceptable, and some of which have caused significant economic losses. The machine learning, especially deep learning, is a very promising and potential approach to vulnerability detecting for smart contracts. At present, deep learning-based vulnerability detection methods have low accuracy, time-consuming, and too small application range. For dealing with these, we propose a novel deep learning-based vulnerability detection framework for smart contracts at opcode level, named as DL4SC. It orthogonally combines the Transformer encoder and CNN (convolutional neural networks) to detect vulnerabilities of smart contracts for the first time, and firstly exploit SSA (sparrow search algorithm) to automatically search model hyperparameters for vulnerability detection. We implement the framework DL4SC on deep learning platform Pytorch with Python, and compare it with existing works on the three public datasets and one dataset we collect. The experiment results show that DL4SC can accurately detect vulnerabilities of smart contracts, and performs better than state-of-the-art works for detecting vulnerabilities in smart contracts. The accuracy and F1-score of DL4SC are 95.29% and 95.68%, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automated Software Engineering
Automated Software Engineering 工程技术-计算机:软件工程
CiteScore
4.80
自引率
11.80%
发文量
51
审稿时长
>12 weeks
期刊介绍: This journal details research, tutorial papers, survey and accounts of significant industrial experience in the foundations, techniques, tools and applications of automated software engineering technology. This includes the study of techniques for constructing, understanding, adapting, and modeling software artifacts and processes. Coverage in Automated Software Engineering examines both automatic systems and collaborative systems as well as computational models of human software engineering activities. In addition, it presents knowledge representations and artificial intelligence techniques applicable to automated software engineering, and formal techniques that support or provide theoretical foundations. The journal also includes reviews of books, software, conferences and workshops.
期刊最新文献
Evoattack: suppressive adversarial attacks against object detection models using evolutionary search Multi-objective improvement of Android applications Contractsentry: a static analysis tool for smart contract vulnerability detection Exploring the impact of code review factors on the code review comment generation A holistic approach to software fault prediction with dynamic classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1