用体内神经成像技术表征大规模人体电路发育过程

IF 6.9 2区 生物学 Q1 CELL BIOLOGY Cold Spring Harbor perspectives in biology Pub Date : 2024-03-04 DOI:10.1101/cshperspect.a041496
Tomoki Arichi
{"title":"用体内神经成像技术表征大规模人体电路发育过程","authors":"Tomoki Arichi","doi":"10.1101/cshperspect.a041496","DOIUrl":null,"url":null,"abstract":"Large-scale coordinated patterns of neural activity are crucial for the integration of information in the human brain and to enable complex and flexible human behavior across the life span. Through recent advances in noninvasive functional magnetic resonance imaging (fMRI) methods, it is now possible to study this activity and how it emerges in the living fetal brain across the second half of human gestation. This work has demonstrated that functional activity in the fetal brain has several features in keeping with highly organized networks of activity, which are undergoing a highly programmed and rapid sequence of development before birth, in which long-range connections emerge and core features of the mature functional connectome (such as hub regions and a gradient organization) are established. In this review, the findings of these studies are summarized, their relationship to the known changes in developmental neurobiology is considered, and considerations for future work in the context of limitations to the fMRI approach are presented.","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":"2012 1","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizing Large-Scale Human Circuit Development with In Vivo Neuroimaging\",\"authors\":\"Tomoki Arichi\",\"doi\":\"10.1101/cshperspect.a041496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large-scale coordinated patterns of neural activity are crucial for the integration of information in the human brain and to enable complex and flexible human behavior across the life span. Through recent advances in noninvasive functional magnetic resonance imaging (fMRI) methods, it is now possible to study this activity and how it emerges in the living fetal brain across the second half of human gestation. This work has demonstrated that functional activity in the fetal brain has several features in keeping with highly organized networks of activity, which are undergoing a highly programmed and rapid sequence of development before birth, in which long-range connections emerge and core features of the mature functional connectome (such as hub regions and a gradient organization) are established. In this review, the findings of these studies are summarized, their relationship to the known changes in developmental neurobiology is considered, and considerations for future work in the context of limitations to the fMRI approach are presented.\",\"PeriodicalId\":10494,\"journal\":{\"name\":\"Cold Spring Harbor perspectives in biology\",\"volume\":\"2012 1\",\"pages\":\"\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cold Spring Harbor perspectives in biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1101/cshperspect.a041496\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor perspectives in biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/cshperspect.a041496","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

大规模协调的神经活动模式对于整合人脑中的信息以及实现人类一生中复杂而灵活的行为至关重要。通过无创功能磁共振成像(fMRI)方法的最新进展,我们现在可以研究这种活动,以及这种活动如何在人类妊娠后半期的活体胎儿大脑中出现。这项工作表明,胎儿大脑中的功能活动具有与高度组织化的活动网络相一致的几个特征,这些网络在出生前正在经历一个高度程序化的快速发展序列,其中出现了长程连接,并建立了成熟功能连接组的核心特征(如枢纽区域和梯度组织)。在这篇综述中,我们总结了这些研究的发现,考虑了它们与已知发育神经生物学变化的关系,并结合 fMRI 方法的局限性提出了未来工作的考虑因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterizing Large-Scale Human Circuit Development with In Vivo Neuroimaging
Large-scale coordinated patterns of neural activity are crucial for the integration of information in the human brain and to enable complex and flexible human behavior across the life span. Through recent advances in noninvasive functional magnetic resonance imaging (fMRI) methods, it is now possible to study this activity and how it emerges in the living fetal brain across the second half of human gestation. This work has demonstrated that functional activity in the fetal brain has several features in keeping with highly organized networks of activity, which are undergoing a highly programmed and rapid sequence of development before birth, in which long-range connections emerge and core features of the mature functional connectome (such as hub regions and a gradient organization) are established. In this review, the findings of these studies are summarized, their relationship to the known changes in developmental neurobiology is considered, and considerations for future work in the context of limitations to the fMRI approach are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
15.00
自引率
1.40%
发文量
56
审稿时长
3-8 weeks
期刊介绍: Cold Spring Harbor Perspectives in Biology offers a comprehensive platform in the molecular life sciences, featuring reviews that span molecular, cell, and developmental biology, genetics, neuroscience, immunology, cancer biology, and molecular pathology. This online publication provides in-depth insights into various topics, making it a valuable resource for those engaged in diverse aspects of biological research.
期刊最新文献
Four-Dimensional Bioprinting: Harnessing Active Mechanics to Build with Living Inks. Plant Breeding and the Origins of Genetics. Telomere Dynamics in Human Health and Disease. The Roles of Transient Receptor Potential (TRP) Channels Underlying Aberrant Calcium Signaling in Blood-Retinal Barrier Dysfunction. The Significance of Mendelism for Evolutionary Theory: A Reassessment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1