Mark Warren, Richard M Bergenstal, Matthew Hager, Eran Bashan, Israel Hodish
{"title":"人工智能驱动的胰岛素滴定程序的可扩展应用,改变 2 型糖尿病管理。","authors":"Mark Warren, Richard M Bergenstal, Matthew Hager, Eran Bashan, Israel Hodish","doi":"10.1089/dia.2024.0041","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background:</i></b> Despite new pharmacotherapy, most patients with long-term type 2 diabetes are still hyperglycemic. This could have been solved by insulin with its unlimited potential efficacy, but its dynamic physiology demands frequent titrations which are overdemanding. This report provides a real-life account for a scalable transformation of diabetes care in a community-based endocrinology center by harnessing artificial intelligence-based autonomous insulin titration. <b><i>Methods:</i></b> The center embedded the d-Nav<sup>®</sup> technology and its dedicated clinical support. Reported outcomes include treatment efficacy/safety in the first 600 patients and use of cardiorenal-risk reduction pharmacotherapy. <b><i>Findings:</i></b> Patients used d-Nav for 8.2 ± 3.0 months with 82% retention. Age was 67.1 ± 11.5 years and duration of diabetes was 19.8 ± 11.0 years. During the last 3 years before d-Nav, glycated hemoglobin (HbA1c) had been overall higher than 8% and at the beginning of the program it was as high as 8.6% ± 2.1% with 29.3% of the patients with HbA1c >9%. With d-Nav, HbA1c decreased to 7.3% ± 1.2% with 5.7% of patients with HbA1c >9%. During the first 3 months, d-Nav reduced total daily dose of insulin in one of every five patients due to relatively low glucose levels to minimize the risk of hypoglycemia. Glucagon like peptide 1 (GLP-1) receptor agonists or dual GLP-1 and Glucose-dependent insulinotropic polypeptide (GIP) receptor agonists were prescribed in about a half of the patients and sodium glucose cotransporter 2 inhibitor in a third. The frequency of hypoglycemia (<54 mg/dL) was 0.4 ± 0.6/month and severe hypoglycemia 1.7/100-patient-years. <b><i>Interpretation:</i></b> The use of d-Nav allowed for improvement in overall diabetes management with appropriate use of both insulin and noninsulin pharmacologic agents in a scalable way.</p>","PeriodicalId":11159,"journal":{"name":"Diabetes technology & therapeutics","volume":" ","pages":"556-565"},"PeriodicalIF":5.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Scalable Application of Artificial Intelligence-Driven Insulin Titration Program to Transform Type 2 Diabetes Management.\",\"authors\":\"Mark Warren, Richard M Bergenstal, Matthew Hager, Eran Bashan, Israel Hodish\",\"doi\":\"10.1089/dia.2024.0041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Background:</i></b> Despite new pharmacotherapy, most patients with long-term type 2 diabetes are still hyperglycemic. This could have been solved by insulin with its unlimited potential efficacy, but its dynamic physiology demands frequent titrations which are overdemanding. This report provides a real-life account for a scalable transformation of diabetes care in a community-based endocrinology center by harnessing artificial intelligence-based autonomous insulin titration. <b><i>Methods:</i></b> The center embedded the d-Nav<sup>®</sup> technology and its dedicated clinical support. Reported outcomes include treatment efficacy/safety in the first 600 patients and use of cardiorenal-risk reduction pharmacotherapy. <b><i>Findings:</i></b> Patients used d-Nav for 8.2 ± 3.0 months with 82% retention. Age was 67.1 ± 11.5 years and duration of diabetes was 19.8 ± 11.0 years. During the last 3 years before d-Nav, glycated hemoglobin (HbA1c) had been overall higher than 8% and at the beginning of the program it was as high as 8.6% ± 2.1% with 29.3% of the patients with HbA1c >9%. With d-Nav, HbA1c decreased to 7.3% ± 1.2% with 5.7% of patients with HbA1c >9%. During the first 3 months, d-Nav reduced total daily dose of insulin in one of every five patients due to relatively low glucose levels to minimize the risk of hypoglycemia. Glucagon like peptide 1 (GLP-1) receptor agonists or dual GLP-1 and Glucose-dependent insulinotropic polypeptide (GIP) receptor agonists were prescribed in about a half of the patients and sodium glucose cotransporter 2 inhibitor in a third. The frequency of hypoglycemia (<54 mg/dL) was 0.4 ± 0.6/month and severe hypoglycemia 1.7/100-patient-years. <b><i>Interpretation:</i></b> The use of d-Nav allowed for improvement in overall diabetes management with appropriate use of both insulin and noninsulin pharmacologic agents in a scalable way.</p>\",\"PeriodicalId\":11159,\"journal\":{\"name\":\"Diabetes technology & therapeutics\",\"volume\":\" \",\"pages\":\"556-565\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diabetes technology & therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/dia.2024.0041\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes technology & therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/dia.2024.0041","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
A Scalable Application of Artificial Intelligence-Driven Insulin Titration Program to Transform Type 2 Diabetes Management.
Background: Despite new pharmacotherapy, most patients with long-term type 2 diabetes are still hyperglycemic. This could have been solved by insulin with its unlimited potential efficacy, but its dynamic physiology demands frequent titrations which are overdemanding. This report provides a real-life account for a scalable transformation of diabetes care in a community-based endocrinology center by harnessing artificial intelligence-based autonomous insulin titration. Methods: The center embedded the d-Nav® technology and its dedicated clinical support. Reported outcomes include treatment efficacy/safety in the first 600 patients and use of cardiorenal-risk reduction pharmacotherapy. Findings: Patients used d-Nav for 8.2 ± 3.0 months with 82% retention. Age was 67.1 ± 11.5 years and duration of diabetes was 19.8 ± 11.0 years. During the last 3 years before d-Nav, glycated hemoglobin (HbA1c) had been overall higher than 8% and at the beginning of the program it was as high as 8.6% ± 2.1% with 29.3% of the patients with HbA1c >9%. With d-Nav, HbA1c decreased to 7.3% ± 1.2% with 5.7% of patients with HbA1c >9%. During the first 3 months, d-Nav reduced total daily dose of insulin in one of every five patients due to relatively low glucose levels to minimize the risk of hypoglycemia. Glucagon like peptide 1 (GLP-1) receptor agonists or dual GLP-1 and Glucose-dependent insulinotropic polypeptide (GIP) receptor agonists were prescribed in about a half of the patients and sodium glucose cotransporter 2 inhibitor in a third. The frequency of hypoglycemia (<54 mg/dL) was 0.4 ± 0.6/month and severe hypoglycemia 1.7/100-patient-years. Interpretation: The use of d-Nav allowed for improvement in overall diabetes management with appropriate use of both insulin and noninsulin pharmacologic agents in a scalable way.
期刊介绍:
Diabetes Technology & Therapeutics is the only peer-reviewed journal providing healthcare professionals with information on new devices, drugs, drug delivery systems, and software for managing patients with diabetes. This leading international journal delivers practical information and comprehensive coverage of cutting-edge technologies and therapeutics in the field, and each issue highlights new pharmacological and device developments to optimize patient care.