经胫骨截肢者在意外的不平坦地形上行走对关节负荷的影响

IF 1.7 4区 医学 Q4 BIOPHYSICS Journal of Biomechanical Engineering-Transactions of the Asme Pub Date : 2024-08-01 DOI:10.1115/1.4065045
Kristen M Stewart, Glenn K Klute, Richard R Neptune
{"title":"经胫骨截肢者在意外的不平坦地形上行走对关节负荷的影响","authors":"Kristen M Stewart, Glenn K Klute, Richard R Neptune","doi":"10.1115/1.4065045","DOIUrl":null,"url":null,"abstract":"<p><p>Individuals with transtibial amputation (TTA) experience asymmetric lower-limb loading which can lead to joint pain and injuries. However, it is unclear how walking over unexpected uneven terrain affects their loading patterns. This study sought to use modeling and simulation to determine how peak joint contact forces and impulses change for individuals with unilateral TTA during an uneven step and subsequent recovery step and how those patterns compare to able-bodied individuals. We expected residual limb loading during the uneven step and intact limb loading during the recovery step would increase relative to flush walking. Further, individuals with TTA would experience larger loading increases compared to able-bodied individuals. Simulations of individuals with TTA showed during the uneven step, changes in joint loading occurred at all joints except the prosthetic ankle relative to flush walking. During the recovery step, intact limb joint loading increased in early stance relative to flush walking. Simulations of able-bodied individuals showed large increases in ankle joint loading for both surface conditions. Overall, increases in early stance knee joint loading were larger for those with TTA compared to able-bodied individuals during both steps. These results suggest that individuals with TTA experience altered joint loading patterns when stepping on uneven terrain. Future work should investigate whether an adapting ankle-foot prosthesis can mitigate these changes to reduce injury risk.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Walking Over Unexpected Uneven Terrain on Joint Loading for Individuals With Transtibial Amputation.\",\"authors\":\"Kristen M Stewart, Glenn K Klute, Richard R Neptune\",\"doi\":\"10.1115/1.4065045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Individuals with transtibial amputation (TTA) experience asymmetric lower-limb loading which can lead to joint pain and injuries. However, it is unclear how walking over unexpected uneven terrain affects their loading patterns. This study sought to use modeling and simulation to determine how peak joint contact forces and impulses change for individuals with unilateral TTA during an uneven step and subsequent recovery step and how those patterns compare to able-bodied individuals. We expected residual limb loading during the uneven step and intact limb loading during the recovery step would increase relative to flush walking. Further, individuals with TTA would experience larger loading increases compared to able-bodied individuals. Simulations of individuals with TTA showed during the uneven step, changes in joint loading occurred at all joints except the prosthetic ankle relative to flush walking. During the recovery step, intact limb joint loading increased in early stance relative to flush walking. Simulations of able-bodied individuals showed large increases in ankle joint loading for both surface conditions. Overall, increases in early stance knee joint loading were larger for those with TTA compared to able-bodied individuals during both steps. These results suggest that individuals with TTA experience altered joint loading patterns when stepping on uneven terrain. Future work should investigate whether an adapting ankle-foot prosthesis can mitigate these changes to reduce injury risk.</p>\",\"PeriodicalId\":54871,\"journal\":{\"name\":\"Journal of Biomechanical Engineering-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomechanical Engineering-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4065045\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomechanical Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4065045","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

经胫骨截肢(TTA)患者的下肢负荷不对称,可能导致关节疼痛和损伤。然而,目前还不清楚在意外的不平坦地形上行走如何影响他们的负荷模式。本研究试图利用建模和模拟来确定单侧 TTA 患者在不平步和随后的恢复步中关节接触力和脉冲的峰值是如何变化的,以及这些模式与健全人的比较。我们预计,与齐步行走相比,不平步期间的残肢负荷和恢复步期间的完整肢体负荷会增加。此外,与健全人相比,患有 TTA 的人将经历更大的负荷增加。对患有 TTA 的个体进行的模拟显示,与齐步行走相比,在不平步期间,除假肢踝关节外,所有关节的负荷都会发生变化。在恢复步中,相对于齐步行走,完整肢体关节负荷在早期站立时有所增加。对健全人的模拟显示,在两种路面条件下,踝关节负荷都有大幅增加。总体而言,与健全人相比,患有 TTA 的人在这两个步骤中早期站立时膝关节负荷的增加幅度更大。这些结果表明,患有 TTA 的人在不平坦的地形上迈步时,其关节负荷模式会发生改变。未来的工作应研究适应性踝足假肢是否能减轻这些变化,从而降低受伤风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of Walking Over Unexpected Uneven Terrain on Joint Loading for Individuals With Transtibial Amputation.

Individuals with transtibial amputation (TTA) experience asymmetric lower-limb loading which can lead to joint pain and injuries. However, it is unclear how walking over unexpected uneven terrain affects their loading patterns. This study sought to use modeling and simulation to determine how peak joint contact forces and impulses change for individuals with unilateral TTA during an uneven step and subsequent recovery step and how those patterns compare to able-bodied individuals. We expected residual limb loading during the uneven step and intact limb loading during the recovery step would increase relative to flush walking. Further, individuals with TTA would experience larger loading increases compared to able-bodied individuals. Simulations of individuals with TTA showed during the uneven step, changes in joint loading occurred at all joints except the prosthetic ankle relative to flush walking. During the recovery step, intact limb joint loading increased in early stance relative to flush walking. Simulations of able-bodied individuals showed large increases in ankle joint loading for both surface conditions. Overall, increases in early stance knee joint loading were larger for those with TTA compared to able-bodied individuals during both steps. These results suggest that individuals with TTA experience altered joint loading patterns when stepping on uneven terrain. Future work should investigate whether an adapting ankle-foot prosthesis can mitigate these changes to reduce injury risk.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
5.90%
发文量
169
审稿时长
4-8 weeks
期刊介绍: Artificial Organs and Prostheses; Bioinstrumentation and Measurements; Bioheat Transfer; Biomaterials; Biomechanics; Bioprocess Engineering; Cellular Mechanics; Design and Control of Biological Systems; Physiological Systems.
期刊最新文献
Computational Study on the Effects of Valve Orientation on the Hemodynamics and Leaflet Dynamics of Bioprosthetic Pulmonary Valves. Modeling Fatigue Failure of Cartilage and Fibrous Biological Tissues Using Constrained Reactive Mixture Theory. A Numerical Study of Crack Penetration and Deflection at the Interface Between Peritubular and Intertubular Dentin. Mitigating Crouch Gait With an Autonomous Pediatric Knee Exoskeleton in the Neurologically Impaired. Topology Optimization Driven Bone-Remodeling Simulation for Lumbar Interbody Fusion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1