Diana Carolina Barrera-Rivera , Jose Miguel Cotes-Torres , Alejandro Amaya , Mario Fernando Ceron-Muñoz
{"title":"优化动物育种项目生长的新选择标准","authors":"Diana Carolina Barrera-Rivera , Jose Miguel Cotes-Torres , Alejandro Amaya , Mario Fernando Ceron-Muñoz","doi":"10.1016/j.livsci.2024.105443","DOIUrl":null,"url":null,"abstract":"<div><p>Pedigree records and longitudinal measurements of live weight from 2628 buffaloes were analyzed. The aim of this research was to propose a new selection criteria, the Area Under the Growth Curve (AUGC), derived from a growth curve-based model. A hierarchical Bayesian approach with two levels was employed. In the first level, the growth trajectory was modeled using a fourth-degree polynomial, while in the second level, each parameter of the polynomial function was treated as a dependent variable influenced by environmental and genetic effects. The animal model included sex, dams’ parity and contemporary group (herd-year-season) as fixed effects, and relationships among animals as a random effect. Inference was conducted using Markov Chain Monte Carlo (MCMC) simulation algorithm. The proposed AUGC is interesting for use in selection programs because it allows breeders to identify heavier animals with lower risk in the production system. Additionally, that trait showed moderate to high heritabilities from weaning onwards, providing a useful new tool for cattle selection in the post-weaning phases.</p></div>","PeriodicalId":18152,"journal":{"name":"Livestock Science","volume":"282 ","pages":"Article 105443"},"PeriodicalIF":1.8000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new selection criteria to optimize growth in animal breeding programs\",\"authors\":\"Diana Carolina Barrera-Rivera , Jose Miguel Cotes-Torres , Alejandro Amaya , Mario Fernando Ceron-Muñoz\",\"doi\":\"10.1016/j.livsci.2024.105443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Pedigree records and longitudinal measurements of live weight from 2628 buffaloes were analyzed. The aim of this research was to propose a new selection criteria, the Area Under the Growth Curve (AUGC), derived from a growth curve-based model. A hierarchical Bayesian approach with two levels was employed. In the first level, the growth trajectory was modeled using a fourth-degree polynomial, while in the second level, each parameter of the polynomial function was treated as a dependent variable influenced by environmental and genetic effects. The animal model included sex, dams’ parity and contemporary group (herd-year-season) as fixed effects, and relationships among animals as a random effect. Inference was conducted using Markov Chain Monte Carlo (MCMC) simulation algorithm. The proposed AUGC is interesting for use in selection programs because it allows breeders to identify heavier animals with lower risk in the production system. Additionally, that trait showed moderate to high heritabilities from weaning onwards, providing a useful new tool for cattle selection in the post-weaning phases.</p></div>\",\"PeriodicalId\":18152,\"journal\":{\"name\":\"Livestock Science\",\"volume\":\"282 \",\"pages\":\"Article 105443\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Livestock Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1871141324000507\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Livestock Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1871141324000507","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
A new selection criteria to optimize growth in animal breeding programs
Pedigree records and longitudinal measurements of live weight from 2628 buffaloes were analyzed. The aim of this research was to propose a new selection criteria, the Area Under the Growth Curve (AUGC), derived from a growth curve-based model. A hierarchical Bayesian approach with two levels was employed. In the first level, the growth trajectory was modeled using a fourth-degree polynomial, while in the second level, each parameter of the polynomial function was treated as a dependent variable influenced by environmental and genetic effects. The animal model included sex, dams’ parity and contemporary group (herd-year-season) as fixed effects, and relationships among animals as a random effect. Inference was conducted using Markov Chain Monte Carlo (MCMC) simulation algorithm. The proposed AUGC is interesting for use in selection programs because it allows breeders to identify heavier animals with lower risk in the production system. Additionally, that trait showed moderate to high heritabilities from weaning onwards, providing a useful new tool for cattle selection in the post-weaning phases.
期刊介绍:
Livestock Science promotes the sound development of the livestock sector by publishing original, peer-reviewed research and review articles covering all aspects of this broad field. The journal welcomes submissions on the avant-garde areas of animal genetics, breeding, growth, reproduction, nutrition, physiology, and behaviour in addition to genetic resources, welfare, ethics, health, management and production systems. The high-quality content of this journal reflects the truly international nature of this broad area of research.