{"title":"在中继跟踪模式下通过低地球轨道巨型星座精确跟踪高超音速滑翔飞行器","authors":"Zhao Li, Yidi Wang, Wei Zheng","doi":"10.23919/jsee.2023.000078","DOIUrl":null,"url":null,"abstract":"In order to effectively defend against the threats of the hypersonic gliding vehicles (HGVs), HGVs should be tracked as early as possible, which is beyond the capability of the ground-based radars. Being benefited by the developing mega-constellations in low-Earth orbit, this paper proposes a relay tracking mode to track HGVs to overcome the above problem. The whole tracking mission is composed of several tracking intervals with the same duration. Within each tracking interval, several appropriate satellites are dispatched to track the HGV. Satellites that are planned to take part in the tracking mission are selected by a new derived observability criterion. The tracking performances of the proposed tracking mode and the other two traditional tracking modes, including the stare and track-rate modes, are compared by simulation. The results show that the relay tracking mode can track the whole trajectory of a HGV, while the stare mode can only provide a very short tracking arc. Moreover, the relay tracking mode achieve higher tracking accuracy with fewer attitude controls than the track-rate mode.","PeriodicalId":50030,"journal":{"name":"Journal of Systems Engineering and Electronics","volume":"23 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accurately Tracking Hypersonic Gliding Vehicles via an LEO Mega-Constellation in Relay Tracking Mode\",\"authors\":\"Zhao Li, Yidi Wang, Wei Zheng\",\"doi\":\"10.23919/jsee.2023.000078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to effectively defend against the threats of the hypersonic gliding vehicles (HGVs), HGVs should be tracked as early as possible, which is beyond the capability of the ground-based radars. Being benefited by the developing mega-constellations in low-Earth orbit, this paper proposes a relay tracking mode to track HGVs to overcome the above problem. The whole tracking mission is composed of several tracking intervals with the same duration. Within each tracking interval, several appropriate satellites are dispatched to track the HGV. Satellites that are planned to take part in the tracking mission are selected by a new derived observability criterion. The tracking performances of the proposed tracking mode and the other two traditional tracking modes, including the stare and track-rate modes, are compared by simulation. The results show that the relay tracking mode can track the whole trajectory of a HGV, while the stare mode can only provide a very short tracking arc. Moreover, the relay tracking mode achieve higher tracking accuracy with fewer attitude controls than the track-rate mode.\",\"PeriodicalId\":50030,\"journal\":{\"name\":\"Journal of Systems Engineering and Electronics\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Systems Engineering and Electronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.23919/jsee.2023.000078\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Engineering and Electronics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.23919/jsee.2023.000078","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Accurately Tracking Hypersonic Gliding Vehicles via an LEO Mega-Constellation in Relay Tracking Mode
In order to effectively defend against the threats of the hypersonic gliding vehicles (HGVs), HGVs should be tracked as early as possible, which is beyond the capability of the ground-based radars. Being benefited by the developing mega-constellations in low-Earth orbit, this paper proposes a relay tracking mode to track HGVs to overcome the above problem. The whole tracking mission is composed of several tracking intervals with the same duration. Within each tracking interval, several appropriate satellites are dispatched to track the HGV. Satellites that are planned to take part in the tracking mission are selected by a new derived observability criterion. The tracking performances of the proposed tracking mode and the other two traditional tracking modes, including the stare and track-rate modes, are compared by simulation. The results show that the relay tracking mode can track the whole trajectory of a HGV, while the stare mode can only provide a very short tracking arc. Moreover, the relay tracking mode achieve higher tracking accuracy with fewer attitude controls than the track-rate mode.