{"title":"旋转诱导火箭鳍的设计及其气动稳定性分析","authors":"Chinmay Karlekar, Shivprakash B. Barve","doi":"10.1007/s42401-024-00284-3","DOIUrl":null,"url":null,"abstract":"<div><p>The stability of a rocket during flight is the one of the most crucial factors from the perspective of a design engineer. Without stability, a rocket is equivalent to an uncontrolled and unpredictable, high-speed projectile. Passive control can stabilize flight in one of two ways: by shifting the center of pressure (CP) behind the center of gravity (CG); or by producing a spin along the axis of flight. This study aims to induce this spin or rotation through the design of fins. This study is a synergistic application of few of the many engineering practices and processes. It has generated airfoil profiles for rotation inducing fins using NACA database; developed a software model using SolidWorks to run analysis using commercial FEA, CFD and stability analysis software; and additively manufactured a prototype model for experimental testing in a subsonic wind tunnel. Pressure, which is responsible for spin, was measured experimentally at different locations across the length of the model and was found to have comparable values as those obtained for CFD study. The experiment also displayed a longitudinally stable spin of the model.</p></div>","PeriodicalId":36309,"journal":{"name":"Aerospace Systems","volume":"7 4","pages":"721 - 726"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of rotation inducing rocket fins and their analysis for aerodynamic stability\",\"authors\":\"Chinmay Karlekar, Shivprakash B. Barve\",\"doi\":\"10.1007/s42401-024-00284-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The stability of a rocket during flight is the one of the most crucial factors from the perspective of a design engineer. Without stability, a rocket is equivalent to an uncontrolled and unpredictable, high-speed projectile. Passive control can stabilize flight in one of two ways: by shifting the center of pressure (CP) behind the center of gravity (CG); or by producing a spin along the axis of flight. This study aims to induce this spin or rotation through the design of fins. This study is a synergistic application of few of the many engineering practices and processes. It has generated airfoil profiles for rotation inducing fins using NACA database; developed a software model using SolidWorks to run analysis using commercial FEA, CFD and stability analysis software; and additively manufactured a prototype model for experimental testing in a subsonic wind tunnel. Pressure, which is responsible for spin, was measured experimentally at different locations across the length of the model and was found to have comparable values as those obtained for CFD study. The experiment also displayed a longitudinally stable spin of the model.</p></div>\",\"PeriodicalId\":36309,\"journal\":{\"name\":\"Aerospace Systems\",\"volume\":\"7 4\",\"pages\":\"721 - 726\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42401-024-00284-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Systems","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42401-024-00284-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Design of rotation inducing rocket fins and their analysis for aerodynamic stability
The stability of a rocket during flight is the one of the most crucial factors from the perspective of a design engineer. Without stability, a rocket is equivalent to an uncontrolled and unpredictable, high-speed projectile. Passive control can stabilize flight in one of two ways: by shifting the center of pressure (CP) behind the center of gravity (CG); or by producing a spin along the axis of flight. This study aims to induce this spin or rotation through the design of fins. This study is a synergistic application of few of the many engineering practices and processes. It has generated airfoil profiles for rotation inducing fins using NACA database; developed a software model using SolidWorks to run analysis using commercial FEA, CFD and stability analysis software; and additively manufactured a prototype model for experimental testing in a subsonic wind tunnel. Pressure, which is responsible for spin, was measured experimentally at different locations across the length of the model and was found to have comparable values as those obtained for CFD study. The experiment also displayed a longitudinally stable spin of the model.
期刊介绍:
Aerospace Systems provides an international, peer-reviewed forum which focuses on system-level research and development regarding aeronautics and astronautics. The journal emphasizes the unique role and increasing importance of informatics on aerospace. It fills a gap in current publishing coverage from outer space vehicles to atmospheric vehicles by highlighting interdisciplinary science, technology and engineering.
Potential topics include, but are not limited to:
Trans-space vehicle systems design and integration
Air vehicle systems
Space vehicle systems
Near-space vehicle systems
Aerospace robotics and unmanned system
Communication, navigation and surveillance
Aerodynamics and aircraft design
Dynamics and control
Aerospace propulsion
Avionics system
Opto-electronic system
Air traffic management
Earth observation
Deep space exploration
Bionic micro-aircraft/spacecraft
Intelligent sensing and Information fusion