用于凸优化的 Polyak Minorant 方法

IF 1.6 3区 数学 Q2 MATHEMATICS, APPLIED Journal of Optimization Theory and Applications Pub Date : 2024-03-30 DOI:10.1007/s10957-024-02412-7
Nikhil Devanathan, Stephen Boyd
{"title":"用于凸优化的 Polyak Minorant 方法","authors":"Nikhil Devanathan, Stephen Boyd","doi":"10.1007/s10957-024-02412-7","DOIUrl":null,"url":null,"abstract":"<p>In 1963 Boris Polyak suggested a particular step size for gradient descent methods, now known as the Polyak step size, that he later adapted to subgradient methods. The Polyak step size requires knowledge of the optimal value of the minimization problem, which is a strong assumption but one that holds for several important problems. In this paper we extend Polyak’s method to handle constraints and, as a generalization of subgradients, general minorants, which are convex functions that tightly lower bound the objective and constraint functions. We refer to this algorithm as the Polyak Minorant Method (PMM). It is closely related to cutting-plane and bundle methods.</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"94 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polyak Minorant Method for Convex Optimization\",\"authors\":\"Nikhil Devanathan, Stephen Boyd\",\"doi\":\"10.1007/s10957-024-02412-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In 1963 Boris Polyak suggested a particular step size for gradient descent methods, now known as the Polyak step size, that he later adapted to subgradient methods. The Polyak step size requires knowledge of the optimal value of the minimization problem, which is a strong assumption but one that holds for several important problems. In this paper we extend Polyak’s method to handle constraints and, as a generalization of subgradients, general minorants, which are convex functions that tightly lower bound the objective and constraint functions. We refer to this algorithm as the Polyak Minorant Method (PMM). It is closely related to cutting-plane and bundle methods.</p>\",\"PeriodicalId\":50100,\"journal\":{\"name\":\"Journal of Optimization Theory and Applications\",\"volume\":\"94 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optimization Theory and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10957-024-02412-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02412-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

1963 年,鲍里斯-波利克(Boris Polyak)为梯度下降法提出了一种特殊的步长,即现在的波利克步长,后来他又将这种步长应用于子梯度法。波利克步长要求知道最小化问题的最优值,这是一个很强的假设,但对一些重要问题来说是成立的。在本文中,我们对 Polyak 方法进行了扩展,以处理约束条件,以及作为子梯度的一般化,处理一般次梯度,即对目标函数和约束函数进行严格下限的凸函数。我们将这种算法称为波利雅克微分法(PMM)。它与切割平面法和束法密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Polyak Minorant Method for Convex Optimization

In 1963 Boris Polyak suggested a particular step size for gradient descent methods, now known as the Polyak step size, that he later adapted to subgradient methods. The Polyak step size requires knowledge of the optimal value of the minimization problem, which is a strong assumption but one that holds for several important problems. In this paper we extend Polyak’s method to handle constraints and, as a generalization of subgradients, general minorants, which are convex functions that tightly lower bound the objective and constraint functions. We refer to this algorithm as the Polyak Minorant Method (PMM). It is closely related to cutting-plane and bundle methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.30%
发文量
149
审稿时长
9.9 months
期刊介绍: The Journal of Optimization Theory and Applications is devoted to the publication of carefully selected regular papers, invited papers, survey papers, technical notes, book notices, and forums that cover mathematical optimization techniques and their applications to science and engineering. Typical theoretical areas include linear, nonlinear, mathematical, and dynamic programming. Among the areas of application covered are mathematical economics, mathematical physics and biology, and aerospace, chemical, civil, electrical, and mechanical engineering.
期刊最新文献
Simultaneous Diagonalization Under Weak Regularity and a Characterization Seeking Consensus on Subspaces in Federated Principal Component Analysis A Multilevel Method for Self-Concordant Minimization A Descent Method for Nonsmooth Multiobjective Optimization in Hilbert Spaces Expected Residual Minimization Formulation for Stochastic Absolute Value Equations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1