Carlos Hernani‐Morales, Gabriel Alvarado, Francisco Albarrán‐Arriagada, Yolanda Vives‐Gilabert, Enrique Solano, José D. Martín‐Guerrero
{"title":"通过机器学习最大化单个和耦合量子晶体记忆器的记忆性","authors":"Carlos Hernani‐Morales, Gabriel Alvarado, Francisco Albarrán‐Arriagada, Yolanda Vives‐Gilabert, Enrique Solano, José D. Martín‐Guerrero","doi":"10.1002/qute.202300294","DOIUrl":null,"url":null,"abstract":"Machine learning (ML) methods are proposed to characterize the memristive properties of single and coupled quantum memristors. It is shown that maximizing the memristivity leads to large values in the degree of entanglement of two quantum memristors, unveiling the close relationship between quantum correlations and memory. The results strengthen the possibility of using quantum memristors as key components of neuromorphic quantum computing.","PeriodicalId":501028,"journal":{"name":"Advanced Quantum Technologies","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning for Maximizing the Memristivity of Single and Coupled Quantum Memristors\",\"authors\":\"Carlos Hernani‐Morales, Gabriel Alvarado, Francisco Albarrán‐Arriagada, Yolanda Vives‐Gilabert, Enrique Solano, José D. Martín‐Guerrero\",\"doi\":\"10.1002/qute.202300294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning (ML) methods are proposed to characterize the memristive properties of single and coupled quantum memristors. It is shown that maximizing the memristivity leads to large values in the degree of entanglement of two quantum memristors, unveiling the close relationship between quantum correlations and memory. The results strengthen the possibility of using quantum memristors as key components of neuromorphic quantum computing.\",\"PeriodicalId\":501028,\"journal\":{\"name\":\"Advanced Quantum Technologies\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Quantum Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/qute.202300294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Quantum Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/qute.202300294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Machine Learning for Maximizing the Memristivity of Single and Coupled Quantum Memristors
Machine learning (ML) methods are proposed to characterize the memristive properties of single and coupled quantum memristors. It is shown that maximizing the memristivity leads to large values in the degree of entanglement of two quantum memristors, unveiling the close relationship between quantum correlations and memory. The results strengthen the possibility of using quantum memristors as key components of neuromorphic quantum computing.