碳-环氧复合材料中模式 I 和模式 II 断裂时粘合接头的疲劳行为,盐水环境中暴露时间的影响

IF 3.8 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Advanced Joining Processes Pub Date : 2024-04-21 DOI:10.1016/j.jajp.2024.100225
P. Vigón , A. Argüelles , M. Lozano , J. Viña
{"title":"碳-环氧复合材料中模式 I 和模式 II 断裂时粘合接头的疲劳行为,盐水环境中暴露时间的影响","authors":"P. Vigón ,&nbsp;A. Argüelles ,&nbsp;M. Lozano ,&nbsp;J. Viña","doi":"10.1016/j.jajp.2024.100225","DOIUrl":null,"url":null,"abstract":"<div><p>This work investigates the fatigue crack growth behavior of adhesive joints under pure modes I and II within epoxy matrix composites reinforced with unidirectional carbon fibers. Experimental tests are made using Double Cantilever Beam (DCB) and End-Notched Flexure (ENF) setups for modes I and II respectively, considering exposure periods of one week and twelve weeks in a salt spray chamber. Control specimens are also studied for comparison.</p><p>Static tests were conducted to securely establish the levels of Energy Release Rate (ERR) that were subsequently used to obtain the fatigue initiation curves (G-N) and fatigue crack growth curves (G-da/dN). A probabilistic model based on a Weibull distribution is applied to analyze fatigue initiation data.</p><p>The fatigue limit in mode I, for all aging periods, is around 25 % of the static strength, while in mode II, it is around 20 %. These results are very close at all aging levels (0, 1, and 12 weeks). From this, it is inferred that aging in a saline environment of the studied joints does not have a significant impact on the fatigue limit.</p><p>In the crack growth zone, for mode I, the velocity is higher in the specimens aged in both periods than in the unaged specimens. The same cannot be said for mode II, where a clear trend cannot be appreciated.</p></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"9 ","pages":"Article 100225"},"PeriodicalIF":3.8000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666330924000414/pdfft?md5=0fae3cc3b900f53419ac11a2b037a88b&pid=1-s2.0-S2666330924000414-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Fatigue behavior of adhesive joints under modes I and II fracture in carbon-epoxy composites, influence of exposure time in a saline environment\",\"authors\":\"P. Vigón ,&nbsp;A. Argüelles ,&nbsp;M. Lozano ,&nbsp;J. Viña\",\"doi\":\"10.1016/j.jajp.2024.100225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work investigates the fatigue crack growth behavior of adhesive joints under pure modes I and II within epoxy matrix composites reinforced with unidirectional carbon fibers. Experimental tests are made using Double Cantilever Beam (DCB) and End-Notched Flexure (ENF) setups for modes I and II respectively, considering exposure periods of one week and twelve weeks in a salt spray chamber. Control specimens are also studied for comparison.</p><p>Static tests were conducted to securely establish the levels of Energy Release Rate (ERR) that were subsequently used to obtain the fatigue initiation curves (G-N) and fatigue crack growth curves (G-da/dN). A probabilistic model based on a Weibull distribution is applied to analyze fatigue initiation data.</p><p>The fatigue limit in mode I, for all aging periods, is around 25 % of the static strength, while in mode II, it is around 20 %. These results are very close at all aging levels (0, 1, and 12 weeks). From this, it is inferred that aging in a saline environment of the studied joints does not have a significant impact on the fatigue limit.</p><p>In the crack growth zone, for mode I, the velocity is higher in the specimens aged in both periods than in the unaged specimens. The same cannot be said for mode II, where a clear trend cannot be appreciated.</p></div>\",\"PeriodicalId\":34313,\"journal\":{\"name\":\"Journal of Advanced Joining Processes\",\"volume\":\"9 \",\"pages\":\"Article 100225\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666330924000414/pdfft?md5=0fae3cc3b900f53419ac11a2b037a88b&pid=1-s2.0-S2666330924000414-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Joining Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666330924000414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Joining Processes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666330924000414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了用单向碳纤维增强的环氧基复合材料在纯模式 I 和 II 下粘接接头的疲劳裂纹生长行为。针对模式 I 和模式 II,分别使用双悬臂梁(DCB)和端部缺口挠曲(ENF)装置进行了实验测试,考虑了盐雾试验箱中一周和十二周的暴露期。进行静态测试是为了确定能量释放率 (ERR) 的水平,随后利用这些水平获得疲劳起始曲线 (G-N) 和疲劳裂纹增长曲线 (G-da/dN)。在所有老化期中,模式 I 的疲劳极限约为静态强度的 25%,而模式 II 约为 20%。在所有老化水平(0、1 和 12 周)下,这些结果都非常接近。由此可以推断,所研究接头在盐水环境中的老化对疲劳极限没有显著影响。在裂纹生长区,对于模式 I,两个老化期的试样的速度均高于未老化的试样。在模式 II 中,情况并非如此,没有明显的趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fatigue behavior of adhesive joints under modes I and II fracture in carbon-epoxy composites, influence of exposure time in a saline environment

This work investigates the fatigue crack growth behavior of adhesive joints under pure modes I and II within epoxy matrix composites reinforced with unidirectional carbon fibers. Experimental tests are made using Double Cantilever Beam (DCB) and End-Notched Flexure (ENF) setups for modes I and II respectively, considering exposure periods of one week and twelve weeks in a salt spray chamber. Control specimens are also studied for comparison.

Static tests were conducted to securely establish the levels of Energy Release Rate (ERR) that were subsequently used to obtain the fatigue initiation curves (G-N) and fatigue crack growth curves (G-da/dN). A probabilistic model based on a Weibull distribution is applied to analyze fatigue initiation data.

The fatigue limit in mode I, for all aging periods, is around 25 % of the static strength, while in mode II, it is around 20 %. These results are very close at all aging levels (0, 1, and 12 weeks). From this, it is inferred that aging in a saline environment of the studied joints does not have a significant impact on the fatigue limit.

In the crack growth zone, for mode I, the velocity is higher in the specimens aged in both periods than in the unaged specimens. The same cannot be said for mode II, where a clear trend cannot be appreciated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
9.80%
发文量
58
审稿时长
44 days
期刊最新文献
Improving the joint strength of thermoplastic composites joined by press joining using laser-based surface treatment Characterization of physical metallurgy of quenching and partitioning steel in pulsed resistance spot welding: A simulation-aided study Influence of the material properties on the clinching process and the resulting load-bearing capacity of the joint Enhancement of joint quality for laser welded dissimilar material cell-to-busbar joints using meta model-based multi-objective optimization Joining by forming of bi-material collector coins with rotating elements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1