枯草芽孢杆菌衍生的碳纳米棒作为高效 ORR 电催化剂

Jintao Sun, Yunpeng Ju, Naibao Huang, Mengqi Bi, Zhen Gao, M. Tang, Wan Li, Xiannian Sun, Guogang Yang
{"title":"枯草芽孢杆菌衍生的碳纳米棒作为高效 ORR 电催化剂","authors":"Jintao Sun, Yunpeng Ju, Naibao Huang, Mengqi Bi, Zhen Gao, M. Tang, Wan Li, Xiannian Sun, Guogang Yang","doi":"10.1149/2162-8777/ad3f4c","DOIUrl":null,"url":null,"abstract":"\n Developing high-performance anion-exchange membrane fuel cells requires stable and highly active oxygen reduction (ORR) catalysts. To fabricate cheap and efficient porous carbon materials for ORR, heteroatom-doped carbon nanorods were synthesized by pyrolyzing Bacillus subtilis. The obtained carbon material maintained the uniformly distributed nanorods as original Bacillus subtilis and had inherent doped heteroatom. The obtained BS-2.0 had the highest specific surface area (209.04 m2 g-1) and the maximum ID/IG (1.0372). Its starting potential (0.93 V vs. RHE) and semi-wave potential (0.81 V vs. RHE) were close to 20% commercial Pt/C, and its ultimate current density was 3.98 mA cm-2@1600 rpm. Meanwhile, the stability of cycling potentiates polarization, and methanol tolerance of BS-2.0 were all greater than 20% commercial Pt/C. It was the inherent heteroatom, well-distributed nanorods, abundant pore distribution, and large surface area that contributed to its excellent electrochemical performance.","PeriodicalId":504734,"journal":{"name":"ECS Journal of Solid State Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bacillus Subtilis-Derived Carbon Nanorods as Efficient ORR Electrocatalysts\",\"authors\":\"Jintao Sun, Yunpeng Ju, Naibao Huang, Mengqi Bi, Zhen Gao, M. Tang, Wan Li, Xiannian Sun, Guogang Yang\",\"doi\":\"10.1149/2162-8777/ad3f4c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Developing high-performance anion-exchange membrane fuel cells requires stable and highly active oxygen reduction (ORR) catalysts. To fabricate cheap and efficient porous carbon materials for ORR, heteroatom-doped carbon nanorods were synthesized by pyrolyzing Bacillus subtilis. The obtained carbon material maintained the uniformly distributed nanorods as original Bacillus subtilis and had inherent doped heteroatom. The obtained BS-2.0 had the highest specific surface area (209.04 m2 g-1) and the maximum ID/IG (1.0372). Its starting potential (0.93 V vs. RHE) and semi-wave potential (0.81 V vs. RHE) were close to 20% commercial Pt/C, and its ultimate current density was 3.98 mA cm-2@1600 rpm. Meanwhile, the stability of cycling potentiates polarization, and methanol tolerance of BS-2.0 were all greater than 20% commercial Pt/C. It was the inherent heteroatom, well-distributed nanorods, abundant pore distribution, and large surface area that contributed to its excellent electrochemical performance.\",\"PeriodicalId\":504734,\"journal\":{\"name\":\"ECS Journal of Solid State Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ECS Journal of Solid State Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1149/2162-8777/ad3f4c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Journal of Solid State Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/2162-8777/ad3f4c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

开发高性能阴离子交换膜燃料电池需要稳定、高活性的氧还原(ORR)催化剂。为了制备用于 ORR 的廉价而高效的多孔碳材料,我们通过热解枯草芽孢杆菌合成了掺杂杂原子的碳纳米棒。得到的碳材料保持了枯草芽孢杆菌原始纳米棒的均匀分布,并具有固有的掺杂杂原子。获得的 BS-2.0 具有最大的比表面积(209.04 m2 g-1)和最大的内径/内径比(1.0372)。其起始电位(0.93 V vs. RHE)和半波电位(0.81 V vs. RHE)接近 20% 的商用 Pt/C,极限电流密度为 3.98 mA cm-2@1600 rpm。同时,BS-2.0 的循环电位稳定性和甲醇耐受性均高于 20% 的商用铂/铂。BS-2.0固有的异质原子、分布均匀的纳米棒、丰富的孔隙分布和较大的比表面积造就了其优异的电化学性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bacillus Subtilis-Derived Carbon Nanorods as Efficient ORR Electrocatalysts
Developing high-performance anion-exchange membrane fuel cells requires stable and highly active oxygen reduction (ORR) catalysts. To fabricate cheap and efficient porous carbon materials for ORR, heteroatom-doped carbon nanorods were synthesized by pyrolyzing Bacillus subtilis. The obtained carbon material maintained the uniformly distributed nanorods as original Bacillus subtilis and had inherent doped heteroatom. The obtained BS-2.0 had the highest specific surface area (209.04 m2 g-1) and the maximum ID/IG (1.0372). Its starting potential (0.93 V vs. RHE) and semi-wave potential (0.81 V vs. RHE) were close to 20% commercial Pt/C, and its ultimate current density was 3.98 mA cm-2@1600 rpm. Meanwhile, the stability of cycling potentiates polarization, and methanol tolerance of BS-2.0 were all greater than 20% commercial Pt/C. It was the inherent heteroatom, well-distributed nanorods, abundant pore distribution, and large surface area that contributed to its excellent electrochemical performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of Calcination Temperature on the Structural, Morphological, and Magnetic Properties of Rare-Earth Orthoferrite NdFeO3 Nanoparticles Synthesized by the Sol-Gel Method Up-Conversion Luminescence and Optical Temperature Sensing of Tb3+, Yb3+, Er3+ Doped (Gd, Y, Lu)2O2S Series Phosphors Study of Two Inorganic Particles in PMMA Electrochromic Devices Based on the Difference of Work Function Effect of Zr, Sm and Gd Doped CoFe2O4 on Structural, Spectral and Magnetic Properties Exploring Magnetic Attributes: Borospherene-Like and Buckminsterfullerene-Like Lattices in Monte Carlo Simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1