从论文到基于 RDF 的纳米材料理化数据和不良后果途径的整合

IF 7.1 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of Cheminformatics Pub Date : 2024-05-01 DOI:10.1186/s13321-024-00833-0
Jeaphianne P. M. van Rijn, Marvin Martens, Ammar Ammar, Mihaela Roxana Cimpan, Valerie Fessard, Peter Hoet, Nina Jeliazkova, Sivakumar Murugadoss, Ivana Vinković Vrček, Egon L. Willighagen
{"title":"从论文到基于 RDF 的纳米材料理化数据和不良后果途径的整合","authors":"Jeaphianne P. M. van Rijn,&nbsp;Marvin Martens,&nbsp;Ammar Ammar,&nbsp;Mihaela Roxana Cimpan,&nbsp;Valerie Fessard,&nbsp;Peter Hoet,&nbsp;Nina Jeliazkova,&nbsp;Sivakumar Murugadoss,&nbsp;Ivana Vinković Vrček,&nbsp;Egon L. Willighagen","doi":"10.1186/s13321-024-00833-0","DOIUrl":null,"url":null,"abstract":"<p>Adverse Outcome Pathways (AOPs) have been proposed to facilitate mechanistic understanding of interactions of chemicals/materials with biological systems. Each AOP starts with a molecular initiating event (MIE) and possibly ends with adverse outcome(s) (AOs) via a series of key events (KEs). So far, the interaction of engineered nanomaterials (ENMs) with biomolecules, biomembranes, cells, and biological structures, in general, is not yet fully elucidated. There is also a huge lack of information on which AOPs are ENMs-relevant or -specific, despite numerous published data on toxicological endpoints they trigger, such as oxidative stress and inflammation. We propose to integrate related data and knowledge recently collected. Our approach combines the annotation of nanomaterials and their MIEs with ontology annotation to demonstrate how we can then query AOPs and biological pathway information for these materials. We conclude that a FAIR (Findable, Accessible, Interoperable, Reusable) representation of the ENM-MIE knowledge simplifies integration with other knowledge.</p>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00833-0","citationCount":"0","resultStr":"{\"title\":\"From papers to RDF-based integration of physicochemical data and adverse outcome pathways for nanomaterials\",\"authors\":\"Jeaphianne P. M. van Rijn,&nbsp;Marvin Martens,&nbsp;Ammar Ammar,&nbsp;Mihaela Roxana Cimpan,&nbsp;Valerie Fessard,&nbsp;Peter Hoet,&nbsp;Nina Jeliazkova,&nbsp;Sivakumar Murugadoss,&nbsp;Ivana Vinković Vrček,&nbsp;Egon L. Willighagen\",\"doi\":\"10.1186/s13321-024-00833-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Adverse Outcome Pathways (AOPs) have been proposed to facilitate mechanistic understanding of interactions of chemicals/materials with biological systems. Each AOP starts with a molecular initiating event (MIE) and possibly ends with adverse outcome(s) (AOs) via a series of key events (KEs). So far, the interaction of engineered nanomaterials (ENMs) with biomolecules, biomembranes, cells, and biological structures, in general, is not yet fully elucidated. There is also a huge lack of information on which AOPs are ENMs-relevant or -specific, despite numerous published data on toxicological endpoints they trigger, such as oxidative stress and inflammation. We propose to integrate related data and knowledge recently collected. Our approach combines the annotation of nanomaterials and their MIEs with ontology annotation to demonstrate how we can then query AOPs and biological pathway information for these materials. We conclude that a FAIR (Findable, Accessible, Interoperable, Reusable) representation of the ENM-MIE knowledge simplifies integration with other knowledge.</p>\",\"PeriodicalId\":617,\"journal\":{\"name\":\"Journal of Cheminformatics\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00833-0\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cheminformatics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13321-024-00833-0\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-024-00833-0","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了便于从机理上理解化学品/材料与生物系统的相互作用,人们提出了不良后果途径(AOPs)。每个 AOP 都以分子起始事件 (MIE) 开始,并可能通过一系列关键事件 (KE) 以不良结果 (AO) 结束。迄今为止,工程纳米材料 (ENM) 与生物分子、生物膜、细胞和生物结构之间的相互作用尚未完全阐明。尽管已发表了大量有关氧化应激和炎症等毒理学终点的数据,但关于哪些 AOPs 与 ENM 相关或具有特异性的信息也非常缺乏。我们建议整合最近收集到的相关数据和知识。我们的方法将纳米材料及其 MIE 的注释与本体注释相结合,演示了如何查询这些材料的 AOP 和生物途径信息。我们的结论是,ENM-MIE 知识的 FAIR(可查找、可访问、可互操作、可重用)表示法简化了与其他知识的整合。本研究引入了一个新的数据库,将纳米材料应激源与首个已知的 MIE 或 KE 联系起来。其次,它提出了一个可重复的工作流程来分析和总结这些知识。第三,这项工作将语义网技术的使用扩展到了纳米信息学和纳米安全领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
From papers to RDF-based integration of physicochemical data and adverse outcome pathways for nanomaterials

Adverse Outcome Pathways (AOPs) have been proposed to facilitate mechanistic understanding of interactions of chemicals/materials with biological systems. Each AOP starts with a molecular initiating event (MIE) and possibly ends with adverse outcome(s) (AOs) via a series of key events (KEs). So far, the interaction of engineered nanomaterials (ENMs) with biomolecules, biomembranes, cells, and biological structures, in general, is not yet fully elucidated. There is also a huge lack of information on which AOPs are ENMs-relevant or -specific, despite numerous published data on toxicological endpoints they trigger, such as oxidative stress and inflammation. We propose to integrate related data and knowledge recently collected. Our approach combines the annotation of nanomaterials and their MIEs with ontology annotation to demonstrate how we can then query AOPs and biological pathway information for these materials. We conclude that a FAIR (Findable, Accessible, Interoperable, Reusable) representation of the ENM-MIE knowledge simplifies integration with other knowledge.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
期刊最新文献
GT-NMR: a novel graph transformer-based approach for accurate prediction of NMR chemical shifts Suitability of large language models for extraction of high-quality chemical reaction dataset from patent literature Molecular identification via molecular fingerprint extraction from atomic force microscopy images A systematic review of deep learning chemical language models in recent era Accelerated hit identification with target evaluation, deep learning and automated labs: prospective validation in IRAK1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1