Jeaphianne P. M. van Rijn, Marvin Martens, Ammar Ammar, Mihaela Roxana Cimpan, Valerie Fessard, Peter Hoet, Nina Jeliazkova, Sivakumar Murugadoss, Ivana Vinković Vrček, Egon L. Willighagen
{"title":"从论文到基于 RDF 的纳米材料理化数据和不良后果途径的整合","authors":"Jeaphianne P. M. van Rijn, Marvin Martens, Ammar Ammar, Mihaela Roxana Cimpan, Valerie Fessard, Peter Hoet, Nina Jeliazkova, Sivakumar Murugadoss, Ivana Vinković Vrček, Egon L. Willighagen","doi":"10.1186/s13321-024-00833-0","DOIUrl":null,"url":null,"abstract":"<p>Adverse Outcome Pathways (AOPs) have been proposed to facilitate mechanistic understanding of interactions of chemicals/materials with biological systems. Each AOP starts with a molecular initiating event (MIE) and possibly ends with adverse outcome(s) (AOs) via a series of key events (KEs). So far, the interaction of engineered nanomaterials (ENMs) with biomolecules, biomembranes, cells, and biological structures, in general, is not yet fully elucidated. There is also a huge lack of information on which AOPs are ENMs-relevant or -specific, despite numerous published data on toxicological endpoints they trigger, such as oxidative stress and inflammation. We propose to integrate related data and knowledge recently collected. Our approach combines the annotation of nanomaterials and their MIEs with ontology annotation to demonstrate how we can then query AOPs and biological pathway information for these materials. We conclude that a FAIR (Findable, Accessible, Interoperable, Reusable) representation of the ENM-MIE knowledge simplifies integration with other knowledge.</p>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00833-0","citationCount":"0","resultStr":"{\"title\":\"From papers to RDF-based integration of physicochemical data and adverse outcome pathways for nanomaterials\",\"authors\":\"Jeaphianne P. M. van Rijn, Marvin Martens, Ammar Ammar, Mihaela Roxana Cimpan, Valerie Fessard, Peter Hoet, Nina Jeliazkova, Sivakumar Murugadoss, Ivana Vinković Vrček, Egon L. Willighagen\",\"doi\":\"10.1186/s13321-024-00833-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Adverse Outcome Pathways (AOPs) have been proposed to facilitate mechanistic understanding of interactions of chemicals/materials with biological systems. Each AOP starts with a molecular initiating event (MIE) and possibly ends with adverse outcome(s) (AOs) via a series of key events (KEs). So far, the interaction of engineered nanomaterials (ENMs) with biomolecules, biomembranes, cells, and biological structures, in general, is not yet fully elucidated. There is also a huge lack of information on which AOPs are ENMs-relevant or -specific, despite numerous published data on toxicological endpoints they trigger, such as oxidative stress and inflammation. We propose to integrate related data and knowledge recently collected. Our approach combines the annotation of nanomaterials and their MIEs with ontology annotation to demonstrate how we can then query AOPs and biological pathway information for these materials. We conclude that a FAIR (Findable, Accessible, Interoperable, Reusable) representation of the ENM-MIE knowledge simplifies integration with other knowledge.</p>\",\"PeriodicalId\":617,\"journal\":{\"name\":\"Journal of Cheminformatics\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00833-0\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cheminformatics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13321-024-00833-0\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-024-00833-0","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
From papers to RDF-based integration of physicochemical data and adverse outcome pathways for nanomaterials
Adverse Outcome Pathways (AOPs) have been proposed to facilitate mechanistic understanding of interactions of chemicals/materials with biological systems. Each AOP starts with a molecular initiating event (MIE) and possibly ends with adverse outcome(s) (AOs) via a series of key events (KEs). So far, the interaction of engineered nanomaterials (ENMs) with biomolecules, biomembranes, cells, and biological structures, in general, is not yet fully elucidated. There is also a huge lack of information on which AOPs are ENMs-relevant or -specific, despite numerous published data on toxicological endpoints they trigger, such as oxidative stress and inflammation. We propose to integrate related data and knowledge recently collected. Our approach combines the annotation of nanomaterials and their MIEs with ontology annotation to demonstrate how we can then query AOPs and biological pathway information for these materials. We conclude that a FAIR (Findable, Accessible, Interoperable, Reusable) representation of the ENM-MIE knowledge simplifies integration with other knowledge.
期刊介绍:
Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling.
Coverage includes, but is not limited to:
chemical information systems, software and databases, and molecular modelling,
chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases,
computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.