开发具有聚合物复合基质调节稳定释放平台的无定形固体分散缓释制剂

IF 3.5 3区 医学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pharmaceutical Research Pub Date : 2024-06-01 Epub Date: 2024-05-14 DOI:10.1007/s11095-024-03709-y
Lingwu Chen, Enshi Hu, Peiya Shen, Shuai Qian, Weili Heng, Jianjun Zhang, Yuan Gao, Yuanfeng Wei
{"title":"开发具有聚合物复合基质调节稳定释放平台的无定形固体分散缓释制剂","authors":"Lingwu Chen, Enshi Hu, Peiya Shen, Shuai Qian, Weili Heng, Jianjun Zhang, Yuan Gao, Yuanfeng Wei","doi":"10.1007/s11095-024-03709-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study was designed to develop ibuprofen (IBU) sustained-release amorphous solid dispersion (ASD) using polymer composites matrix with drug release plateaus for stable release and to further reveal intrinsic links between polymer' matrix ratios and drug release behaviors.</p><p><strong>Methods: </strong>Hydrophilic polymers and hydrophobic polymers were combined to form different composite matrices in developing IBU ASD formulations by hot melt extrusion technique. The intrinsic links between the mixed polymer matrix ratio and drug dissolution behaviors was deeply clarified from the dissolution curves of hydrophilic polymers and swelling curves of composite matrices, and intermolecular forces among the components in ASDs.</p><p><strong>Results: </strong>IBU + ammonio methacrylate copolymer type B (RSPO) + poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP VA64) physical mixtures presented unstable release behaviors with large error bars due to inhomogeneities at the micrometer level. However, IBU-RSPO-PVP VA64 ASDs showed a \"dissolution plateau phenomenon\", i.e., release behaviors of IBU in ASDs were unaffected by polymer ratios when PVP VA64 content was 35% ~ 50%, which could reduce risks of variations in release behaviors due to fluctuations in prescriptions/processes. The release of IBU in ASDs was simultaneously regulated by the PVP VA64-mediated \"dissolution\" and RSPO-PVP VA64 assembly-mediated \"swelling\". Radial distribution function suggested that similar intermolecular forces between RSPO and PVP VA64 were key mechanisms for the \"dissolution plateau phenomenon\" in ASDs at 35% ~ 50% of PVP VA64.</p><p><strong>Conclusions: </strong>This study provided ideas for developing ASD sustained-release formulations with stable release plateau modulated by polymer combinations, taking full advantages of simple process/prescription, ease of scale-up and favorable release behavior of ASD formulations.</p>","PeriodicalId":20027,"journal":{"name":"Pharmaceutical Research","volume":" ","pages":"1233-1245"},"PeriodicalIF":3.5000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Amorphous Solid Dispersion Sustained-Release Formulations with Polymer Composite Matrix-Regulated Stable Release Plateaus.\",\"authors\":\"Lingwu Chen, Enshi Hu, Peiya Shen, Shuai Qian, Weili Heng, Jianjun Zhang, Yuan Gao, Yuanfeng Wei\",\"doi\":\"10.1007/s11095-024-03709-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>This study was designed to develop ibuprofen (IBU) sustained-release amorphous solid dispersion (ASD) using polymer composites matrix with drug release plateaus for stable release and to further reveal intrinsic links between polymer' matrix ratios and drug release behaviors.</p><p><strong>Methods: </strong>Hydrophilic polymers and hydrophobic polymers were combined to form different composite matrices in developing IBU ASD formulations by hot melt extrusion technique. The intrinsic links between the mixed polymer matrix ratio and drug dissolution behaviors was deeply clarified from the dissolution curves of hydrophilic polymers and swelling curves of composite matrices, and intermolecular forces among the components in ASDs.</p><p><strong>Results: </strong>IBU + ammonio methacrylate copolymer type B (RSPO) + poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP VA64) physical mixtures presented unstable release behaviors with large error bars due to inhomogeneities at the micrometer level. However, IBU-RSPO-PVP VA64 ASDs showed a \\\"dissolution plateau phenomenon\\\", i.e., release behaviors of IBU in ASDs were unaffected by polymer ratios when PVP VA64 content was 35% ~ 50%, which could reduce risks of variations in release behaviors due to fluctuations in prescriptions/processes. The release of IBU in ASDs was simultaneously regulated by the PVP VA64-mediated \\\"dissolution\\\" and RSPO-PVP VA64 assembly-mediated \\\"swelling\\\". Radial distribution function suggested that similar intermolecular forces between RSPO and PVP VA64 were key mechanisms for the \\\"dissolution plateau phenomenon\\\" in ASDs at 35% ~ 50% of PVP VA64.</p><p><strong>Conclusions: </strong>This study provided ideas for developing ASD sustained-release formulations with stable release plateau modulated by polymer combinations, taking full advantages of simple process/prescription, ease of scale-up and favorable release behavior of ASD formulations.</p>\",\"PeriodicalId\":20027,\"journal\":{\"name\":\"Pharmaceutical Research\",\"volume\":\" \",\"pages\":\"1233-1245\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11095-024-03709-y\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11095-024-03709-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究旨在利用聚合物复合基质开发布洛芬(IBU)缓释无定形固体分散体(ASD),并进一步揭示聚合物基质配比与药物释放行为之间的内在联系。方法:采用热熔挤出技术将亲水性聚合物和疏水性聚合物组合成不同的复合基质,用于开发布洛芬缓释无定形固体分散体(IBU ASD)配方。通过亲水性聚合物的溶解曲线、复合基质的溶胀曲线以及 ASD 中各组分的分子间作用力,深入阐明了混合聚合物基质配比与药物溶出行为之间的内在联系:结果:IBU + 甲基丙烯酸铵共聚物 B 型(RSPO)+ 聚(1-乙烯基吡咯烷酮-醋酸乙烯酯)(PVP VA64)物理混合物由于微米级的不均匀性,释放行为不稳定,误差较大。然而,IBU-RSPO-PVP VA64 ASD 显示出一种 "溶出高原现象",即当 PVP VA64 含量为 35% ~ 50% 时,IBU 在 ASD 中的释放行为不受聚合物比例的影响,这可以降低因处方/工艺波动而导致释放行为变化的风险。ASD 中 IBU 的释放同时受到 PVP VA64 介导的 "溶解 "和 RSPO-PVP VA64 组装介导的 "膨胀 "的调节。径向分布函数表明,RSPO 和 PVP VA64 之间相似的分子间作用力是 ASD 在 PVP VA64 含量为 35% ~ 50% 时出现 "溶解高原现象 "的关键机制:本研究为开发由聚合物组合调节稳定释放平台的 ASD 缓释制剂提供了思路,充分发挥了 ASD 制剂工艺/处方简单、易于放大和释放行为良好的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of Amorphous Solid Dispersion Sustained-Release Formulations with Polymer Composite Matrix-Regulated Stable Release Plateaus.

Purpose: This study was designed to develop ibuprofen (IBU) sustained-release amorphous solid dispersion (ASD) using polymer composites matrix with drug release plateaus for stable release and to further reveal intrinsic links between polymer' matrix ratios and drug release behaviors.

Methods: Hydrophilic polymers and hydrophobic polymers were combined to form different composite matrices in developing IBU ASD formulations by hot melt extrusion technique. The intrinsic links between the mixed polymer matrix ratio and drug dissolution behaviors was deeply clarified from the dissolution curves of hydrophilic polymers and swelling curves of composite matrices, and intermolecular forces among the components in ASDs.

Results: IBU + ammonio methacrylate copolymer type B (RSPO) + poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP VA64) physical mixtures presented unstable release behaviors with large error bars due to inhomogeneities at the micrometer level. However, IBU-RSPO-PVP VA64 ASDs showed a "dissolution plateau phenomenon", i.e., release behaviors of IBU in ASDs were unaffected by polymer ratios when PVP VA64 content was 35% ~ 50%, which could reduce risks of variations in release behaviors due to fluctuations in prescriptions/processes. The release of IBU in ASDs was simultaneously regulated by the PVP VA64-mediated "dissolution" and RSPO-PVP VA64 assembly-mediated "swelling". Radial distribution function suggested that similar intermolecular forces between RSPO and PVP VA64 were key mechanisms for the "dissolution plateau phenomenon" in ASDs at 35% ~ 50% of PVP VA64.

Conclusions: This study provided ideas for developing ASD sustained-release formulations with stable release plateau modulated by polymer combinations, taking full advantages of simple process/prescription, ease of scale-up and favorable release behavior of ASD formulations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pharmaceutical Research
Pharmaceutical Research 医学-化学综合
CiteScore
6.60
自引率
5.40%
发文量
276
审稿时长
3.4 months
期刊介绍: Pharmaceutical Research, an official journal of the American Association of Pharmaceutical Scientists, is committed to publishing novel research that is mechanism-based, hypothesis-driven and addresses significant issues in drug discovery, development and regulation. Current areas of interest include, but are not limited to: -(pre)formulation engineering and processing- computational biopharmaceutics- drug delivery and targeting- molecular biopharmaceutics and drug disposition (including cellular and molecular pharmacology)- pharmacokinetics, pharmacodynamics and pharmacogenetics. Research may involve nonclinical and clinical studies, and utilize both in vitro and in vivo approaches. Studies on small drug molecules, pharmaceutical solid materials (including biomaterials, polymers and nanoparticles) biotechnology products (including genes, peptides, proteins and vaccines), and genetically engineered cells are welcome.
期刊最新文献
Physiologically Based Pharmacokinetic Modeling to Assess Ritonavir-Digoxin Interactions and Recommendations for Co-Administration Regimens. Pharmacological Innovations in Space: Challenges and Future Perspectives. Regulatory Role of eIF2αK4 in Amino Acid Transporter Expression in Mouse Brain Capillary Endothelial Cells. Chemical Distribution Uniformity Assessment of "Intra-Tablet" by Hyperspectral Raman Imaging Analysis. The Current State of Biotransformation Science - Industry Survey of In Vitro and In Vivo Practices, Clinical Translation, and Future Trends.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1