Gabriel Sanderson, Ze Zheng, Elizaveta Melik-Gaykazyan, George S D Gordon, Richard Cousins, Cuifeng Ying, Mohsen Rahmani and Lei Xu
{"title":"利用由高 Q 值准 BIC 状态支配的非线性硅谐振器进行红外成像","authors":"Gabriel Sanderson, Ze Zheng, Elizaveta Melik-Gaykazyan, George S D Gordon, Richard Cousins, Cuifeng Ying, Mohsen Rahmani and Lei Xu","doi":"10.1088/2040-8986/ad44a9","DOIUrl":null,"url":null,"abstract":"Nonlinear light-matter interactions have emerged as a promising platform for various applications, including imaging, nanolasing, background-free sensing, etc. Subwavelength dielectric resonators offer unique opportunities for manipulating light at the nanoscale and miniturising optical elements. Here, we explore the resonantly enhanced four-wave mixing (FWM) process from individual silicon resonators and propose an innovative FWM-enabled infrared imaging technique that leverages the capabilities of these subwavelength resonators. Specifically, we designed high-Q silicon resonators hosting dual quasi-bound states in the continuum at both the input pump and signal beams, enabling efficient conversion of infrared light to visible radiation. Moreover, by employing a point-scanning imaging technique, we achieve infrared imaging conversion while minimising the dependence on high-power input sources. This combination of resonant enhancement and point-scanning imaging opens up new possibilities for nonlinear imaging using individual resonators and shows potential in advancing infrared imaging techniques for high-resolution imaging, sensing, and optical communications.","PeriodicalId":16775,"journal":{"name":"Journal of Optics","volume":"24 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infrared imaging with nonlinear silicon resonator governed by high-Q quasi-BIC states\",\"authors\":\"Gabriel Sanderson, Ze Zheng, Elizaveta Melik-Gaykazyan, George S D Gordon, Richard Cousins, Cuifeng Ying, Mohsen Rahmani and Lei Xu\",\"doi\":\"10.1088/2040-8986/ad44a9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonlinear light-matter interactions have emerged as a promising platform for various applications, including imaging, nanolasing, background-free sensing, etc. Subwavelength dielectric resonators offer unique opportunities for manipulating light at the nanoscale and miniturising optical elements. Here, we explore the resonantly enhanced four-wave mixing (FWM) process from individual silicon resonators and propose an innovative FWM-enabled infrared imaging technique that leverages the capabilities of these subwavelength resonators. Specifically, we designed high-Q silicon resonators hosting dual quasi-bound states in the continuum at both the input pump and signal beams, enabling efficient conversion of infrared light to visible radiation. Moreover, by employing a point-scanning imaging technique, we achieve infrared imaging conversion while minimising the dependence on high-power input sources. This combination of resonant enhancement and point-scanning imaging opens up new possibilities for nonlinear imaging using individual resonators and shows potential in advancing infrared imaging techniques for high-resolution imaging, sensing, and optical communications.\",\"PeriodicalId\":16775,\"journal\":{\"name\":\"Journal of Optics\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2040-8986/ad44a9\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2040-8986/ad44a9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
Infrared imaging with nonlinear silicon resonator governed by high-Q quasi-BIC states
Nonlinear light-matter interactions have emerged as a promising platform for various applications, including imaging, nanolasing, background-free sensing, etc. Subwavelength dielectric resonators offer unique opportunities for manipulating light at the nanoscale and miniturising optical elements. Here, we explore the resonantly enhanced four-wave mixing (FWM) process from individual silicon resonators and propose an innovative FWM-enabled infrared imaging technique that leverages the capabilities of these subwavelength resonators. Specifically, we designed high-Q silicon resonators hosting dual quasi-bound states in the continuum at both the input pump and signal beams, enabling efficient conversion of infrared light to visible radiation. Moreover, by employing a point-scanning imaging technique, we achieve infrared imaging conversion while minimising the dependence on high-power input sources. This combination of resonant enhancement and point-scanning imaging opens up new possibilities for nonlinear imaging using individual resonators and shows potential in advancing infrared imaging techniques for high-resolution imaging, sensing, and optical communications.
期刊介绍:
Journal of Optics publishes new experimental and theoretical research across all areas of pure and applied optics, both modern and classical. Research areas are categorised as:
Nanophotonics and plasmonics
Metamaterials and structured photonic materials
Quantum photonics
Biophotonics
Light-matter interactions
Nonlinear and ultrafast optics
Propagation, diffraction and scattering
Optical communication
Integrated optics
Photovoltaics and energy harvesting
We discourage incremental advances, purely numerical simulations without any validation, or research without a strong optics advance, e.g. computer algorithms applied to optical and imaging processes, equipment designs or material fabrication.