利用仿真预训练改进冷冻电镜显微照片的去噪效果

IF 1.4 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS Journal of Computational Biology Pub Date : 2024-06-01 Epub Date: 2024-05-28 DOI:10.1089/cmb.2024.0513
Zhidong Yang, Hongjia Li, Dawei Zang, Renmin Han, Fa Zhang
{"title":"利用仿真预训练改进冷冻电镜显微照片的去噪效果","authors":"Zhidong Yang, Hongjia Li, Dawei Zang, Renmin Han, Fa Zhang","doi":"10.1089/cmb.2024.0513","DOIUrl":null,"url":null,"abstract":"<p><p><b>Cryo-electron microscopy (cryo-EM) has emerged as a potent technique for determining the structure and functionality of biological macromolecules. However, limited by the physical imaging conditions, such as low electron beam dose, micrographs in cryo-EM typically contend with an extremely low signal-to-noise ratio (SNR), impeding the efficiency and efficacy of subsequent analyses. Therefore, there is a growing demand for an efficient denoising algorithm designed for cryo-EM micrographs, aiming to enhance the quality of macromolecular analysis. However, owing to the absence of a comprehensive and well-defined dataset with ground truth images, supervised image denoising methods exhibit limited generalization when applied to experimental micrographs. To tackle this challenge, we introduce a simulation-aware image denoising (SaID) pretrained model designed to enhance the SNR of cryo-EM micrographs where the training is solely based on an accurately simulated dataset. First, we propose a parameter calibration algorithm for simulated dataset generation, aiming to align simulation parameters with those of experimental micrographs. Second, leveraging the accurately simulated dataset, we propose to train a deep general denoising model that can well generalize to real experimental cryo-EM micrographs. Comprehensive experimental results demonstrate that our pretrained denoising model achieves excellent denoising performance on experimental cryo-EM micrographs, significantly streamlining downstream analysis</b>.</p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":" ","pages":"564-575"},"PeriodicalIF":1.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Denoising of Cryo-Electron Microscopy Micrographs with Simulation-Aware Pretraining.\",\"authors\":\"Zhidong Yang, Hongjia Li, Dawei Zang, Renmin Han, Fa Zhang\",\"doi\":\"10.1089/cmb.2024.0513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Cryo-electron microscopy (cryo-EM) has emerged as a potent technique for determining the structure and functionality of biological macromolecules. However, limited by the physical imaging conditions, such as low electron beam dose, micrographs in cryo-EM typically contend with an extremely low signal-to-noise ratio (SNR), impeding the efficiency and efficacy of subsequent analyses. Therefore, there is a growing demand for an efficient denoising algorithm designed for cryo-EM micrographs, aiming to enhance the quality of macromolecular analysis. However, owing to the absence of a comprehensive and well-defined dataset with ground truth images, supervised image denoising methods exhibit limited generalization when applied to experimental micrographs. To tackle this challenge, we introduce a simulation-aware image denoising (SaID) pretrained model designed to enhance the SNR of cryo-EM micrographs where the training is solely based on an accurately simulated dataset. First, we propose a parameter calibration algorithm for simulated dataset generation, aiming to align simulation parameters with those of experimental micrographs. Second, leveraging the accurately simulated dataset, we propose to train a deep general denoising model that can well generalize to real experimental cryo-EM micrographs. Comprehensive experimental results demonstrate that our pretrained denoising model achieves excellent denoising performance on experimental cryo-EM micrographs, significantly streamlining downstream analysis</b>.</p>\",\"PeriodicalId\":15526,\"journal\":{\"name\":\"Journal of Computational Biology\",\"volume\":\" \",\"pages\":\"564-575\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/cmb.2024.0513\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2024.0513","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/28 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

低温电子显微镜(cryo-EM)已成为确定生物大分子结构和功能的有效技术。然而,受限于低电子束剂量等物理成像条件,冷冻电镜显微照片通常信噪比(SNR)极低,影响了后续分析的效率和效果。因此,人们越来越需要一种专为低温电子显微图像设计的高效去噪算法,以提高大分子分析的质量。然而,由于缺乏全面且定义明确的基本真实图像数据集,有监督的图像去噪方法在应用于实验显微照片时表现出有限的通用性。为了应对这一挑战,我们引入了一种模拟感知图像去噪(SaID)预训练模型,旨在提高冷冻电镜显微照片的信噪比,其训练完全基于精确模拟的数据集。首先,我们提出了一种用于生成模拟数据集的参数校准算法,旨在使模拟参数与实验显微照片的参数保持一致。其次,利用精确模拟的数据集,我们提出训练一个深度通用去噪模型,该模型可以很好地泛化到真实的冷冻电镜显微照片实验中。综合实验结果表明,我们预训练的去噪模型在实验冷冻电镜显微照片上实现了出色的去噪性能,大大简化了下游分析工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved Denoising of Cryo-Electron Microscopy Micrographs with Simulation-Aware Pretraining.

Cryo-electron microscopy (cryo-EM) has emerged as a potent technique for determining the structure and functionality of biological macromolecules. However, limited by the physical imaging conditions, such as low electron beam dose, micrographs in cryo-EM typically contend with an extremely low signal-to-noise ratio (SNR), impeding the efficiency and efficacy of subsequent analyses. Therefore, there is a growing demand for an efficient denoising algorithm designed for cryo-EM micrographs, aiming to enhance the quality of macromolecular analysis. However, owing to the absence of a comprehensive and well-defined dataset with ground truth images, supervised image denoising methods exhibit limited generalization when applied to experimental micrographs. To tackle this challenge, we introduce a simulation-aware image denoising (SaID) pretrained model designed to enhance the SNR of cryo-EM micrographs where the training is solely based on an accurately simulated dataset. First, we propose a parameter calibration algorithm for simulated dataset generation, aiming to align simulation parameters with those of experimental micrographs. Second, leveraging the accurately simulated dataset, we propose to train a deep general denoising model that can well generalize to real experimental cryo-EM micrographs. Comprehensive experimental results demonstrate that our pretrained denoising model achieves excellent denoising performance on experimental cryo-EM micrographs, significantly streamlining downstream analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Biology
Journal of Computational Biology 生物-计算机:跨学科应用
CiteScore
3.60
自引率
5.90%
发文量
113
审稿时长
6-12 weeks
期刊介绍: Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics. Journal of Computational Biology coverage includes: -Genomics -Mathematical modeling and simulation -Distributed and parallel biological computing -Designing biological databases -Pattern matching and pattern detection -Linking disparate databases and data -New tools for computational biology -Relational and object-oriented database technology for bioinformatics -Biological expert system design and use -Reasoning by analogy, hypothesis formation, and testing by machine -Management of biological databases
期刊最新文献
CLHGNNMDA: Hypergraph Neural Network Model Enhanced by Contrastive Learning for miRNA-Disease Association Prediction. Advances in Estimating Level-1 Phylogenetic Networks from Unrooted SNPs. Adaptive Arithmetic Coding-Based Encoding Method Toward High-Density DNA Storage. The Statistics of Parametrized Syncmers in a Simple Mutation Process Without Spurious Matches. A Hybrid GNN Approach for Improved Molecular Property Prediction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1