{"title":"电弧编织策略在通过定向能沉积工艺制造厚壁 4043 铝合金部件中的作用","authors":"Kumar Ujjwal , R.K. Singh Raman , Alok Kumar Das","doi":"10.1016/j.cirpj.2024.05.016","DOIUrl":null,"url":null,"abstract":"<div><p>Arc weaving is a feasible technique for making thick-walled components in the arc-based directed energy deposition process (DED-Arc). In the current study, four different arc weaving strategies, namely, triangle, square, semi-circle, and helix, are used to fabricate the walls. For this, gas tungsten arc welding (GTAW) based DED-Arc set-up using aluminium alloy wire (ER4043) as a filler material is used for different printing strategies. The fabricated walls were investigated for their surface characteristics, microstructure, mechanical properties and residual stress. The weld-bead and wall geometry study revealed that for the same number of layers, the semi-circular arc-weaving strategy had the maximum height among all, with an effective area of 65.77 %. The waviness of the side surface of the walls was maximum for the semi-circle (714 ± 35 µm), indicating the semi-circle will require almost twice the amount of machining than the helix, square, and triangle in postprocessing operation. The optical micrographs showed that the semi-circular weaving pattern exhibited a coarser gain with thicker grain boundaries with an average grain size of 46.4 ± 23.7 µm as compared to other weaving patterns. The triangle weaving pattern demonstrated the smallest grain size among all, resulting in high hardness and superior wear resistance. The residual stress (RS) results revealed that the RS is in tension (22–24 MPa) in the bottom layers for all the walls and becomes almost zero (−1.5 to −2.5 MPa) in the top layers except for the walls formed by helix strategy. The square weaving strategy strikes a balance between surface characteristics, microstructure, and mechanical properties, making it a highly viable option for thick wall fabrication.</p></div>","PeriodicalId":56011,"journal":{"name":"CIRP Journal of Manufacturing Science and Technology","volume":"52 ","pages":"Pages 12-25"},"PeriodicalIF":4.6000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of arc weaving strategies in the fabrication of thick-walled 4043 aluminium alloy components through directed energy deposition process\",\"authors\":\"Kumar Ujjwal , R.K. Singh Raman , Alok Kumar Das\",\"doi\":\"10.1016/j.cirpj.2024.05.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Arc weaving is a feasible technique for making thick-walled components in the arc-based directed energy deposition process (DED-Arc). In the current study, four different arc weaving strategies, namely, triangle, square, semi-circle, and helix, are used to fabricate the walls. For this, gas tungsten arc welding (GTAW) based DED-Arc set-up using aluminium alloy wire (ER4043) as a filler material is used for different printing strategies. The fabricated walls were investigated for their surface characteristics, microstructure, mechanical properties and residual stress. The weld-bead and wall geometry study revealed that for the same number of layers, the semi-circular arc-weaving strategy had the maximum height among all, with an effective area of 65.77 %. The waviness of the side surface of the walls was maximum for the semi-circle (714 ± 35 µm), indicating the semi-circle will require almost twice the amount of machining than the helix, square, and triangle in postprocessing operation. The optical micrographs showed that the semi-circular weaving pattern exhibited a coarser gain with thicker grain boundaries with an average grain size of 46.4 ± 23.7 µm as compared to other weaving patterns. The triangle weaving pattern demonstrated the smallest grain size among all, resulting in high hardness and superior wear resistance. The residual stress (RS) results revealed that the RS is in tension (22–24 MPa) in the bottom layers for all the walls and becomes almost zero (−1.5 to −2.5 MPa) in the top layers except for the walls formed by helix strategy. The square weaving strategy strikes a balance between surface characteristics, microstructure, and mechanical properties, making it a highly viable option for thick wall fabrication.</p></div>\",\"PeriodicalId\":56011,\"journal\":{\"name\":\"CIRP Journal of Manufacturing Science and Technology\",\"volume\":\"52 \",\"pages\":\"Pages 12-25\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CIRP Journal of Manufacturing Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1755581724000713\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CIRP Journal of Manufacturing Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755581724000713","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Role of arc weaving strategies in the fabrication of thick-walled 4043 aluminium alloy components through directed energy deposition process
Arc weaving is a feasible technique for making thick-walled components in the arc-based directed energy deposition process (DED-Arc). In the current study, four different arc weaving strategies, namely, triangle, square, semi-circle, and helix, are used to fabricate the walls. For this, gas tungsten arc welding (GTAW) based DED-Arc set-up using aluminium alloy wire (ER4043) as a filler material is used for different printing strategies. The fabricated walls were investigated for their surface characteristics, microstructure, mechanical properties and residual stress. The weld-bead and wall geometry study revealed that for the same number of layers, the semi-circular arc-weaving strategy had the maximum height among all, with an effective area of 65.77 %. The waviness of the side surface of the walls was maximum for the semi-circle (714 ± 35 µm), indicating the semi-circle will require almost twice the amount of machining than the helix, square, and triangle in postprocessing operation. The optical micrographs showed that the semi-circular weaving pattern exhibited a coarser gain with thicker grain boundaries with an average grain size of 46.4 ± 23.7 µm as compared to other weaving patterns. The triangle weaving pattern demonstrated the smallest grain size among all, resulting in high hardness and superior wear resistance. The residual stress (RS) results revealed that the RS is in tension (22–24 MPa) in the bottom layers for all the walls and becomes almost zero (−1.5 to −2.5 MPa) in the top layers except for the walls formed by helix strategy. The square weaving strategy strikes a balance between surface characteristics, microstructure, and mechanical properties, making it a highly viable option for thick wall fabrication.
期刊介绍:
The CIRP Journal of Manufacturing Science and Technology (CIRP-JMST) publishes fundamental papers on manufacturing processes, production equipment and automation, product design, manufacturing systems and production organisations up to the level of the production networks, including all the related technical, human and economic factors. Preference is given to contributions describing research results whose feasibility has been demonstrated either in a laboratory or in the industrial praxis. Case studies and review papers on specific issues in manufacturing science and technology are equally encouraged.