高频振动下车轮与轨道之间动态低附着力行为的显式有限元模拟

IF 1.5 4区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Engineering Computations Pub Date : 2024-06-18 DOI:10.1108/ec-01-2024-0028
Wen Liu, Shuangchao Huang, Hongfeng Qi, Xin Zhao, Shulin Liang, Xuesong Jin
{"title":"高频振动下车轮与轨道之间动态低附着力行为的显式有限元模拟","authors":"Wen Liu, Shuangchao Huang, Hongfeng Qi, Xin Zhao, Shulin Liang, Xuesong Jin","doi":"10.1108/ec-01-2024-0028","DOIUrl":null,"url":null,"abstract":"PurposeDynamic low adhesion (DLA) has become an urgent problem for the high-speed wheel-rail system because of continuous decrease of adhesion redundancy in the past decades. This article aims to provide a simulation method to reveal the mechanism of DLA under high-frequency vibrations.Design/methodology/approachA transient wheel-rail rolling contact model is developed for a typical Chinese high-speed railway system using the explicit finite element (FE) method. Instantaneous adhesion exploitation levels are studied in the time domain, for which driving cases over corrugated rails are taken as an example. A speed up to 500 km/h is considered together with different traction coefficients and corrugation dimensions. DLA is expected when the instantaneous adhesion exploitation level reaches 1.0, that is adhesion saturates and full sliding contact occurs.FindingsThe instantaneous adhesion exploitation level can be very high in the presence of corrugation, even at low traction coefficients. DLA is found to occur as great vertical unloading takes place and causes a significant increase of creepage. An approach is further developed to determine the critical depth of corrugation over which DLA occurs.Originality/valueThis study employs the transient wheel-rail rolling contact model to predict the instantaneous adhesion exploitation level under high-frequency vibrations. The presented results reveal a mechanism of DLA being beneficial to guidelines for future railway practice.","PeriodicalId":50522,"journal":{"name":"Engineering Computations","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explicit finite element simulations of dynamic low adhesion behavior between wheel and rail in the presence of high-frequency vibrations\",\"authors\":\"Wen Liu, Shuangchao Huang, Hongfeng Qi, Xin Zhao, Shulin Liang, Xuesong Jin\",\"doi\":\"10.1108/ec-01-2024-0028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeDynamic low adhesion (DLA) has become an urgent problem for the high-speed wheel-rail system because of continuous decrease of adhesion redundancy in the past decades. This article aims to provide a simulation method to reveal the mechanism of DLA under high-frequency vibrations.Design/methodology/approachA transient wheel-rail rolling contact model is developed for a typical Chinese high-speed railway system using the explicit finite element (FE) method. Instantaneous adhesion exploitation levels are studied in the time domain, for which driving cases over corrugated rails are taken as an example. A speed up to 500 km/h is considered together with different traction coefficients and corrugation dimensions. DLA is expected when the instantaneous adhesion exploitation level reaches 1.0, that is adhesion saturates and full sliding contact occurs.FindingsThe instantaneous adhesion exploitation level can be very high in the presence of corrugation, even at low traction coefficients. DLA is found to occur as great vertical unloading takes place and causes a significant increase of creepage. An approach is further developed to determine the critical depth of corrugation over which DLA occurs.Originality/valueThis study employs the transient wheel-rail rolling contact model to predict the instantaneous adhesion exploitation level under high-frequency vibrations. The presented results reveal a mechanism of DLA being beneficial to guidelines for future railway practice.\",\"PeriodicalId\":50522,\"journal\":{\"name\":\"Engineering Computations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Computations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/ec-01-2024-0028\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Computations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/ec-01-2024-0028","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

目的由于过去几十年来附着力冗余度不断降低,动态低附着力(DLA)已成为高速轮轨系统亟待解决的问题。本文旨在提供一种仿真方法,以揭示高频振动下的 DLA 机理。设计/方法/途径采用显式有限元(FE)方法为典型的中国高速铁路系统建立了瞬态轮轨滚动接触模型。在时域中研究了瞬时附着力利用水平,并以波纹钢轨上的行驶情况为例。考虑了最高 500 km/h 的速度以及不同的牵引系数和波纹尺寸。当瞬时附着力利用水平达到 1.0 时,即附着力达到饱和并发生完全滑动接触时,预计会出现 DLA。研究发现,当发生巨大的垂直卸载时会出现 DLA,并导致爬行量显著增加。本研究采用瞬态轮轨滚动接触模型来预测高频振动下的瞬时附着力利用水平。研究结果揭示了 DLA 的机理,有助于为未来的铁路实践提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Explicit finite element simulations of dynamic low adhesion behavior between wheel and rail in the presence of high-frequency vibrations
PurposeDynamic low adhesion (DLA) has become an urgent problem for the high-speed wheel-rail system because of continuous decrease of adhesion redundancy in the past decades. This article aims to provide a simulation method to reveal the mechanism of DLA under high-frequency vibrations.Design/methodology/approachA transient wheel-rail rolling contact model is developed for a typical Chinese high-speed railway system using the explicit finite element (FE) method. Instantaneous adhesion exploitation levels are studied in the time domain, for which driving cases over corrugated rails are taken as an example. A speed up to 500 km/h is considered together with different traction coefficients and corrugation dimensions. DLA is expected when the instantaneous adhesion exploitation level reaches 1.0, that is adhesion saturates and full sliding contact occurs.FindingsThe instantaneous adhesion exploitation level can be very high in the presence of corrugation, even at low traction coefficients. DLA is found to occur as great vertical unloading takes place and causes a significant increase of creepage. An approach is further developed to determine the critical depth of corrugation over which DLA occurs.Originality/valueThis study employs the transient wheel-rail rolling contact model to predict the instantaneous adhesion exploitation level under high-frequency vibrations. The presented results reveal a mechanism of DLA being beneficial to guidelines for future railway practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Computations
Engineering Computations 工程技术-工程:综合
CiteScore
3.40
自引率
6.20%
发文量
61
审稿时长
5 months
期刊介绍: The journal presents its readers with broad coverage across all branches of engineering and science of the latest development and application of new solution algorithms, innovative numerical methods and/or solution techniques directed at the utilization of computational methods in engineering analysis, engineering design and practice. For more information visit: http://www.emeraldgrouppublishing.com/ec.htm
期刊最新文献
Dislocation-based finite element method for homogenized limit domain characterization of structured metamaterials A dual opposition learning-based multi-objective Aquila Optimizer for trading-off time-cost-quality-CO2 emissions of generalized construction projects An efficient concrete plastic damage model for crack propagation in gravity dams during seismic action A new thermo-optical system with a fractional Caputo operator for a rotating spherical semiconductor medium immersed in a magnetic field Optimizing high-temperature geothermal extraction through THM coupling: insights from SC-CO2 enhanced modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1