基于实空间卷积的弹性应变能相场模型近似算法

IF 2.1 3区 数学 Q1 MATHEMATICS, APPLIED Numerical Methods for Partial Differential Equations Pub Date : 2024-06-14 DOI:10.1002/num.23122
YaQian Gao, Xuebin Chi, JiXian Yin, Jian Zhang
{"title":"基于实空间卷积的弹性应变能相场模型近似算法","authors":"YaQian Gao, Xuebin Chi, JiXian Yin, Jian Zhang","doi":"10.1002/num.23122","DOIUrl":null,"url":null,"abstract":"Phase field models have been employed extensively in the study of microstructure evolution in materials. Elasticity plays an important role in solid‐state phase transformation processes, and it is usually introduced into phase field models in terms of the elastic strain energy by applying Khachaturyan–Shatalov microelasticity theory. Conventionally, this energy is derived in the reciprocal space and results in full‐space Fourier transformation in practice, which becomes bottle‐neck in large‐scale and massively‐parallel applications. In this article, we propose an error‐controlled approximation algorithm for scalable and efficient calculation of the elastic strain energy in phase field models. We first derive a real‐space convolutional representation of the elastic strain energy by representing the equilibrium displacements in the Khachaturyan–Shatalov microelasticity theory using Green's function. Then we propose an error‐controlled truncation criterion to approximate the corresponding terms in the phase field model. Finally, a carefully designed parallel algorithm is presented to carry out large‐scale simulations. The accuracy and efficiency of the proposed algorithm are demonstrated by real‐world large‐scale phase field simulations.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A real space convolution‐based approximate algorithm for phase field model involving elastic strain energy\",\"authors\":\"YaQian Gao, Xuebin Chi, JiXian Yin, Jian Zhang\",\"doi\":\"10.1002/num.23122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phase field models have been employed extensively in the study of microstructure evolution in materials. Elasticity plays an important role in solid‐state phase transformation processes, and it is usually introduced into phase field models in terms of the elastic strain energy by applying Khachaturyan–Shatalov microelasticity theory. Conventionally, this energy is derived in the reciprocal space and results in full‐space Fourier transformation in practice, which becomes bottle‐neck in large‐scale and massively‐parallel applications. In this article, we propose an error‐controlled approximation algorithm for scalable and efficient calculation of the elastic strain energy in phase field models. We first derive a real‐space convolutional representation of the elastic strain energy by representing the equilibrium displacements in the Khachaturyan–Shatalov microelasticity theory using Green's function. Then we propose an error‐controlled truncation criterion to approximate the corresponding terms in the phase field model. Finally, a carefully designed parallel algorithm is presented to carry out large‐scale simulations. The accuracy and efficiency of the proposed algorithm are demonstrated by real‐world large‐scale phase field simulations.\",\"PeriodicalId\":19443,\"journal\":{\"name\":\"Numerical Methods for Partial Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Methods for Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/num.23122\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Methods for Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23122","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

相场模型被广泛应用于材料微结构演变的研究中。弹性在固态相变过程中发挥着重要作用,通常通过应用 Khachaturyan-Shatalov 微弹性理论将弹性应变能引入相场模型。传统上,这种能量是在倒数空间推导出来的,在实际应用中会导致全空间傅里叶变换,这在大规模并行应用中成为瓶颈。在本文中,我们提出了一种误差控制近似算法,用于在相场模型中可扩展地高效计算弹性应变能。我们首先通过使用格林函数表示 Khachaturyan-Shatalov 微弹性理论中的平衡位移,推导出弹性应变能的实空间卷积表示法。然后,我们提出了一种误差控制截断准则,以近似相场模型中的相应项。最后,我们提出了一种精心设计的并行算法来进行大规模模拟。通过实际的大规模相场模拟,证明了所提算法的准确性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A real space convolution‐based approximate algorithm for phase field model involving elastic strain energy
Phase field models have been employed extensively in the study of microstructure evolution in materials. Elasticity plays an important role in solid‐state phase transformation processes, and it is usually introduced into phase field models in terms of the elastic strain energy by applying Khachaturyan–Shatalov microelasticity theory. Conventionally, this energy is derived in the reciprocal space and results in full‐space Fourier transformation in practice, which becomes bottle‐neck in large‐scale and massively‐parallel applications. In this article, we propose an error‐controlled approximation algorithm for scalable and efficient calculation of the elastic strain energy in phase field models. We first derive a real‐space convolutional representation of the elastic strain energy by representing the equilibrium displacements in the Khachaturyan–Shatalov microelasticity theory using Green's function. Then we propose an error‐controlled truncation criterion to approximate the corresponding terms in the phase field model. Finally, a carefully designed parallel algorithm is presented to carry out large‐scale simulations. The accuracy and efficiency of the proposed algorithm are demonstrated by real‐world large‐scale phase field simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
2.60%
发文量
81
审稿时长
9 months
期刊介绍: An international journal that aims to cover research into the development and analysis of new methods for the numerical solution of partial differential equations, it is intended that it be readily readable by and directed to a broad spectrum of researchers into numerical methods for partial differential equations throughout science and engineering. The numerical methods and techniques themselves are emphasized rather than the specific applications. The Journal seeks to be interdisciplinary, while retaining the common thread of applied numerical analysis.
期刊最新文献
Compactness results for a Dirichlet energy of nonlocal gradient with applications Layer‐parallel training of residual networks with auxiliary variable networks Error bound of the multilevel fast multipole method for 3‐D scattering problems An explicit fourth‐order hybrid‐variable method for Euler equations with a residual‐consistent viscosity Exponential time difference methods with spatial exponential approximations for solving boundary layer problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1