Jinlong Xie , Long Cheng , Gang Wang , Min Hu , Zaiyang Yu , Minghua Du , Xin Ning
{"title":"融合可微分渲染和语言图像对比学习,实现卓越的零拍点云分类","authors":"Jinlong Xie , Long Cheng , Gang Wang , Min Hu , Zaiyang Yu , Minghua Du , Xin Ning","doi":"10.1016/j.displa.2024.102773","DOIUrl":null,"url":null,"abstract":"<div><p>Zero-shot point cloud classification involves recognizing categories not encountered during training. Current models often exhibit reduced accuracy on unseen categories without 3D pre-training, emphasizing the need for improved precision and interoperability. We propose a novel approach integrating differentiable rendering with contrastive language–image pre-training. Initially, differentiable rendering autonomously learns representative viewpoints from the data, enabling the transformation of point clouds into multi-view images while preserving key visual information. This transformation facilitates optimized viewpoint selection during training, refining the final feature representation. Features are extracted from the multi-view images and integrated into a global multi-view feature using a cross-attention mechanism. On the textual side, a large language model (LLM) is provided with 3D heuristic prompts to generate 3D-specific text reflecting category-specific traits, from which textual features are derived. The LLM’s extensive pre-trained knowledge enables it to capture abstract notions and categorical features relevant to distinct point cloud categories. Visual and textual features are aligned in a unified embedding space, enabling zero-shot classification. Throughout training, the Structural Similarity Index (SSIM) is integrated into the loss function to encourage the model to discern more distinctive viewpoints, reduce redundancy in multi-view imagery, and enhance computational efficiency. Experimental results on the ModelNet10, ModelNet40, and ScanObjectNN datasets demonstrate classification accuracies of 75.68%, 66.42%, and 52.03%, respectively, surpassing prevailing methods in zero-shot point cloud classification accuracy.</p></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"84 ","pages":"Article 102773"},"PeriodicalIF":3.7000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fusing differentiable rendering and language–image contrastive learning for superior zero-shot point cloud classification\",\"authors\":\"Jinlong Xie , Long Cheng , Gang Wang , Min Hu , Zaiyang Yu , Minghua Du , Xin Ning\",\"doi\":\"10.1016/j.displa.2024.102773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Zero-shot point cloud classification involves recognizing categories not encountered during training. Current models often exhibit reduced accuracy on unseen categories without 3D pre-training, emphasizing the need for improved precision and interoperability. We propose a novel approach integrating differentiable rendering with contrastive language–image pre-training. Initially, differentiable rendering autonomously learns representative viewpoints from the data, enabling the transformation of point clouds into multi-view images while preserving key visual information. This transformation facilitates optimized viewpoint selection during training, refining the final feature representation. Features are extracted from the multi-view images and integrated into a global multi-view feature using a cross-attention mechanism. On the textual side, a large language model (LLM) is provided with 3D heuristic prompts to generate 3D-specific text reflecting category-specific traits, from which textual features are derived. The LLM’s extensive pre-trained knowledge enables it to capture abstract notions and categorical features relevant to distinct point cloud categories. Visual and textual features are aligned in a unified embedding space, enabling zero-shot classification. Throughout training, the Structural Similarity Index (SSIM) is integrated into the loss function to encourage the model to discern more distinctive viewpoints, reduce redundancy in multi-view imagery, and enhance computational efficiency. Experimental results on the ModelNet10, ModelNet40, and ScanObjectNN datasets demonstrate classification accuracies of 75.68%, 66.42%, and 52.03%, respectively, surpassing prevailing methods in zero-shot point cloud classification accuracy.</p></div>\",\"PeriodicalId\":50570,\"journal\":{\"name\":\"Displays\",\"volume\":\"84 \",\"pages\":\"Article 102773\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Displays\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141938224001379\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141938224001379","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Fusing differentiable rendering and language–image contrastive learning for superior zero-shot point cloud classification
Zero-shot point cloud classification involves recognizing categories not encountered during training. Current models often exhibit reduced accuracy on unseen categories without 3D pre-training, emphasizing the need for improved precision and interoperability. We propose a novel approach integrating differentiable rendering with contrastive language–image pre-training. Initially, differentiable rendering autonomously learns representative viewpoints from the data, enabling the transformation of point clouds into multi-view images while preserving key visual information. This transformation facilitates optimized viewpoint selection during training, refining the final feature representation. Features are extracted from the multi-view images and integrated into a global multi-view feature using a cross-attention mechanism. On the textual side, a large language model (LLM) is provided with 3D heuristic prompts to generate 3D-specific text reflecting category-specific traits, from which textual features are derived. The LLM’s extensive pre-trained knowledge enables it to capture abstract notions and categorical features relevant to distinct point cloud categories. Visual and textual features are aligned in a unified embedding space, enabling zero-shot classification. Throughout training, the Structural Similarity Index (SSIM) is integrated into the loss function to encourage the model to discern more distinctive viewpoints, reduce redundancy in multi-view imagery, and enhance computational efficiency. Experimental results on the ModelNet10, ModelNet40, and ScanObjectNN datasets demonstrate classification accuracies of 75.68%, 66.42%, and 52.03%, respectively, surpassing prevailing methods in zero-shot point cloud classification accuracy.
期刊介绍:
Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface.
Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.