六方锑化镓 CaAgAs 中的线节点狄拉克半金属和拓扑绝缘相的热电特性

IF 1.5 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Physica Status Solidi B-basic Solid State Physics Pub Date : 2024-06-25 DOI:10.1002/pssb.202400187
Narender Kumar, Nisha Sheoran, Hardev S. Saini
{"title":"六方锑化镓 CaAgAs 中的线节点狄拉克半金属和拓扑绝缘相的热电特性","authors":"Narender Kumar, Nisha Sheoran, Hardev S. Saini","doi":"10.1002/pssb.202400187","DOIUrl":null,"url":null,"abstract":"The structural, electronic, and transport properties of CaAgAs, a recently predicted topological nodal line semimetal, are investigated using density‐functional theory with spin–orbit coupling (SOC) and Boltzmann transport theory. The material exhibits a topological phase transition from a nodal line semimetal to a topological insulator (TI) phase as a result of the SOC effect. The Voigt–Reuss–Hill approximation is used to compute various mechanical properties. The calculated Seebeck coefficient ≈153.19 μV K<jats:sup>−1</jats:sup>, power factor ≈5.9 × 10<jats:sup>11</jats:sup> W m<jats:sup>−1</jats:sup> K<jats:sup>−2</jats:sup> s<jats:sup>−1</jats:sup>, and lattice thermal conductivity ≈6.20 W m<jats:sup>−1</jats:sup> K<jats:sup>−1</jats:sup> suggest that CaAgAs have superior thermoelectric performance compared to other well‐known predicted thermoelectric materials. The calculated value of figure of merit for without (NSOC) is 0.34, which increases to 0.43 with SOC at 500 K. In these findings, the potential of CaAgAs is reflected as a thermoelectric material, attributed to the topological phase transition induced by SOC.","PeriodicalId":20406,"journal":{"name":"Physica Status Solidi B-basic Solid State Physics","volume":"165 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermoelectric Properties of Line‐Node Dirac Semimetal and Topological Insulating Phase in Hexagonal Pnictide CaAgAs\",\"authors\":\"Narender Kumar, Nisha Sheoran, Hardev S. Saini\",\"doi\":\"10.1002/pssb.202400187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The structural, electronic, and transport properties of CaAgAs, a recently predicted topological nodal line semimetal, are investigated using density‐functional theory with spin–orbit coupling (SOC) and Boltzmann transport theory. The material exhibits a topological phase transition from a nodal line semimetal to a topological insulator (TI) phase as a result of the SOC effect. The Voigt–Reuss–Hill approximation is used to compute various mechanical properties. The calculated Seebeck coefficient ≈153.19 μV K<jats:sup>−1</jats:sup>, power factor ≈5.9 × 10<jats:sup>11</jats:sup> W m<jats:sup>−1</jats:sup> K<jats:sup>−2</jats:sup> s<jats:sup>−1</jats:sup>, and lattice thermal conductivity ≈6.20 W m<jats:sup>−1</jats:sup> K<jats:sup>−1</jats:sup> suggest that CaAgAs have superior thermoelectric performance compared to other well‐known predicted thermoelectric materials. The calculated value of figure of merit for without (NSOC) is 0.34, which increases to 0.43 with SOC at 500 K. In these findings, the potential of CaAgAs is reflected as a thermoelectric material, attributed to the topological phase transition induced by SOC.\",\"PeriodicalId\":20406,\"journal\":{\"name\":\"Physica Status Solidi B-basic Solid State Physics\",\"volume\":\"165 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Status Solidi B-basic Solid State Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/pssb.202400187\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi B-basic Solid State Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/pssb.202400187","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

本文采用具有自旋轨道耦合(SOC)的密度泛函理论和玻尔兹曼输运理论,研究了最近预测的拓扑节点线半金属 CaAgAs 的结构、电子和输运特性。由于自旋轨道耦合效应,该材料呈现出从结线半金属到拓扑绝缘体(TI)的拓扑相变。Voigt-Reuss-Hill 近似用于计算各种机械性能。计算得出的塞贝克系数≈153.19 μV K-1、功率因数≈5.9 × 1011 W m-1 K-2 s-1和晶格热导率≈6.20 W m-1 K-1表明,与其他著名的热电材料相比,钙钛矿具有更优越的热电性能。这些发现反映了 CaAgAs 作为热电材料的潜力,这归功于 SOC 诱导的拓扑相变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermoelectric Properties of Line‐Node Dirac Semimetal and Topological Insulating Phase in Hexagonal Pnictide CaAgAs
The structural, electronic, and transport properties of CaAgAs, a recently predicted topological nodal line semimetal, are investigated using density‐functional theory with spin–orbit coupling (SOC) and Boltzmann transport theory. The material exhibits a topological phase transition from a nodal line semimetal to a topological insulator (TI) phase as a result of the SOC effect. The Voigt–Reuss–Hill approximation is used to compute various mechanical properties. The calculated Seebeck coefficient ≈153.19 μV K−1, power factor ≈5.9 × 1011 W m−1 K−2 s−1, and lattice thermal conductivity ≈6.20 W m−1 K−1 suggest that CaAgAs have superior thermoelectric performance compared to other well‐known predicted thermoelectric materials. The calculated value of figure of merit for without (NSOC) is 0.34, which increases to 0.43 with SOC at 500 K. In these findings, the potential of CaAgAs is reflected as a thermoelectric material, attributed to the topological phase transition induced by SOC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica Status Solidi B-basic Solid State Physics
Physica Status Solidi B-basic Solid State Physics 物理-物理:凝聚态物理
CiteScore
3.30
自引率
6.20%
发文量
321
审稿时长
2 months
期刊介绍: physica status solidi is devoted to the thorough peer review and the rapid publication of new and important results in all fields of solid state and materials physics, from basic science to applications and devices. Being among the largest and most important international publications, the pss journals publish review articles, letters and original work as well as special issues and conference contributions. physica status solidi b – basic solid state physics is devoted to topics such as theoretical and experimental investigations of the atomistic and electronic structure of solids in general, phase transitions, electronic and optical properties of low-dimensional, nano-scale, strongly correlated, or disordered systems, superconductivity, magnetism, ferroelectricity etc.
期刊最新文献
Accelerating Nonequilibrium Green Functions Simulations: The G1–G2 Scheme and Beyond Tip‐Enhanced Raman Spectroscopy Coherence Length of 2D Materials: An Application to Graphene Magnetic Anisotropy of Cr2Te3: Competition between Surface and Middle Layers Progress in Non‐equilibrium Green's Functions VIII (PNGF VIII) Half‐Metallic Ferromagnetism in 2D Janus Monolayers: Mn2GeX (X = As, Sb)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1